
Improving Inter-kernel Data Reuse
With CTA-Page Coordination in GPGPU

Xuanyi Li∗, Chen Li∗‡, Yang Guo∗, Rachata Ausavarungnirun†‡
∗National University of Defense Technology, Changsha, China

†King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
∗{lixuanyi, lichen, guoyang}@nudt.edu.cn, †r.ausavarungnirun@gmail.com

Abstract—Although modern GPUs are equipped with expand-
ing memory, accommodating the entire working set of large-
scale workloads can still be a challenge. With the support of
unified virtual memory and demand paging, programmers can
transparently oversubscribe the main memory. However, this
transparent management still comes at a severe performance
cost, especially for applications with inter-kernel data sharing.
While there have been many efforts to reduce additional data
migrations caused by the memory oversubscription, few consider
the reuse of shared data during the boundary of adjacent kernels.
Due to limited memory capacity, we observe that adjacent
kernel often demands shared pages that were evicted by the
previous kernel, resulting in a significant number of costly data
migrations. In this paper, we propose a CTA-Page collaborative
framework, called CPC, that transparently reduces the impact of
memory oversubscription using CTA dispatch switching and page
replacement switching coordinately to reuse inter-kernel shared
data.

We evaluate CPC with a variety of GPGPU benchmark
suites. Experimental results show that the system performance is
improved by 65% compared with the state-of-the-art technique
for applications with inter-kernel data sharing.

Index Terms—memory oversubscription, CTA-Page Coordina-
tion, unified memory

I. INTRODUCTION

Due to high computing throughput and increasing pro-
grammability, the Graphics Processing Units (GPUs) have
been widely used in various fields, including machine learn-
ing [1], object detection [2], and image denoising [3] to
accelerate large scale parallel computation. However, limited
GPU memory capacity cannot satisfy the increasing GPU ap-
plication working set size, which leads to serious performance
slowdown as data needs to be moved back and forth between
the CPU memory and the GPU memory.

To manage data between CPU’s memory and GPU’s mem-
ory, programmers have to manually manage the data move-
ment between the CPU memory and the GPU memory, which
significantly sacrifices the productivity of programmers. While
Unified Virtual Memory and Demand Paging [4] are intro-
duced to provide transparent memory oversubscription, these
techniques still bring high-performance penalties as additional
data pages can migrate between the CPU memory and the GPU
memory. Therefore, reducing these additional data movements
becomes more and more important.

‡ refers to corresponding author.

We observe that there are kernels with producer-consumer
dependencies and common inputs in many applications ac-
cording to the analysis across multiple benchmark [5]–[9].
Among these applications, shared data produced or utilized by
the CTA of the previous kernel is usually consumed or utilized
by the corresponding CTA of the current kernel. For such
cases, kernels with data sharing access the same data area at
a similar sequence. When the GPU memory is oversubscribed
and cannot accommodate the whole working set size of the
kernel, old pages will be swapped out to make room for new
pages. At the end of each kernel, only the latest accessed
pages remain in the GPU memory. When the following kernel
launches, the same pages which have been evicted by the
previous kernel are accessed again. All these page faults
appear at the beginning of the new kernel, causing severe
congestion in paging. Although kernels share lots of data with
neighbored kernels in these applications, such data sharing
can be broken by the memory oversubscription. As shown in
Fig.1, data is migrated from the CPU memory to the GPU
memory contiguously throughout the whole executing process
of the application with inter-kernel data sharing under the
oversubscribed GPU memory. Therefore, original data reuse
between neighbored kernels no longer exists, leading to a large
number of page faults.

Kernel1 Kernel2

GPU Memory CPU Memory

Time

...

Footprint

Fig. 1. Paging process of the application with inter-kernel data sharing under
the oversubscribed GPU memory.

There are several previous works alleviating the perfor-
mance loss caused by memory oversubscription, including
ETC [10], prefetching pages [11], [12] and batched faulting
pages [13], but they can hardly improve the performance
for the applications with inter-kernel data sharing. These
methods either hide the eviction latency or accelerate the
page migration, but they cannot reduce the number of page
movements. Therefore, our goal is to explore the opportunities
in reusing shared data between the adjacent kernels.

In this paper, we propose a CTA-Page Collaborative frame-
work, called CPC, which improves the performance by utiliz-
ing the inter-kernel data sharing in an application-transparent



way. According to the execution of shared-data kernels,
CPC coordinates (1) cooperative thread array (CTA) dispatch
switching (denoted as DispatchSwitch) that switches the direc-
tion of CTA dispatching sequence and (2) page replacement
policy switching (denoted as ReplacementSwitch) that switches
the page replacement policy to effectively reuse the shared data
between kernels. We evaluate CPC with a variety of GPGPU
benchmark suites and show that CPC outperforms the state-
of-the-art technique by 65%.

This work makes the following contributions:

• This paper provides an in-depth analysis of page access
patterns for applications with inter-kernel data sharing.
We find that such data reuse is destroyed completely
when the memory is oversubscribed since data has to be
evicted and paged back and forth among multiple kernels.

• We propose an application-transparent framework, CPC,
to reduce the impact caused by the memory oversub-
scription. Our solution reuses the inter-kernel shared
data, which is effective in reducing the data movements
between the CPU memory and the GPU memory.

• We find that both DispatchSwitch and ReplacementSwitch
are important to coordinate related computation and data
together for reducing the page fault rate at the boundary
of neighbored kernels. Overall, CPC outperforms the
state-of-the-art technique by 65% with an average 56.7%
data reuse rate.

II. BACKGROUND

This section first introduces the GPU execution model (Sec-
tion II-A), the architecture of modern GPUs (Section II-B), and
the CTA scheduling policy (Section II-C).

SM SM

CTA Scheduler

SM...

Interconnect Network

L2 Cache L2 Cache...

Memory 
Partition

Memory 
Partition

GPU

MC MC

NVLink/PCI-e

...

...

CPU 
MemoryBridge

HOST

CPU

GPU Driver

Command Processor

Warp Scheduler/
Scoreboard

SP SP SP...

Register File

SM

Shared 
Mem L1 Cache

Const
Cache

Texture
Cache

Memory Subsystem

SP

Fig. 2. Baseline GPU Architecture

A. GPU Execution model

GPU applications usually consist of multiple kernels, where
kernels without data dependency can run simultaneously. Each
GPU kernel consists of groups of threads called Thread Block
(TB) or Cooperative Thread Array (CTA) 1. A CTA is split
into multiple warps, where all threads execute in lockstep.
Each CTA shares a scratchpad memory called shared memory.
Though threads within the CTA execute coordinately through
various synchronization methods, CTAs can be executed in any
order while ensuring the correctness. Therefore, modifying the
CTA scheduling policy has no impact on application. Such
property is critical for our proposed designs.

With both Unified Virtual Memory and Demand Paging [4],
modern GPUs can transparently manage data, which improves
programmability significantly. In this case, data can be ac-
cessed with the same virtual address by both CPU and GPU
on demand instead of all being copied before execution. When
the GPU intends to access a physical page absent in the
device memory, it generates a page fault and the GPU driver
sends data at the page or multi-page granularity from the
CPU memory to the GPU memory. This functionality provides
the opportunity to oversubscribe the GPU memory. However,
this suffers significant performance overhead because the page
faults block the execution until the requested data is loaded
and such process normally lasts for tens of microseconds [11].

B. GPU Architecture

Fig.2 shows the baseline GPU architecture based on
NVIDIA’s design. A command processor is used to receive the
commands from the CPU and controls the GPU accordingly
[14]. The CTA scheduler selects CTAs and dispatches them
into the proper SMs based on the status of SMs. A single
GPU consists of multiple streaming multiprocessors (SMs) and
several shared memory partitions connected via interconnect
network. Data transfer between CPU and GPU is through off-
chip links such as NVLink and PCI-e. Each SM is composed
of multiple streaming processors (SPs) supporting multiple
threads executing concurrently. These threads form a warp,
which is the basic execution unit. Warps are selected and
issued by the warp scheduler from a warp pending pool
tracked by the scoreboard, which delivers the high utilization
of SMs. Local GPU memory system including various types
of L1 caches used in different data spaces for the compute
cores. A data access can fetch its data from the caches, the
GPU memory via the interconnection network, or from CPU
memory through the external link, which can cost hundreds
or thousands of cycles [11].

C. CTA Scheduling

Many prior works propose various types of CTA scheduling
policy [15]–[19]. The default CTA scheduling policy has been
assumed as a simple round-robin (RR) scheme [20], [21].
CTAs are selected from the CTA pending pool in ascending

1We use NVIDIA’s terminology here as our validation platforms are
NVIDIA products and the proposed methods are also applicable to other types
of GPUs.



order and assigned to each available SMs in multiple rounds
by the CTA scheduler (i.e., GigaThread Engine). This process
stops until all of the CTAs within the pool have been dis-
patched or no SMs are available, limited by both resources
(e.g., shared memory, registers, etc.) or hardware (e.g., warp
slots, etc.). Whenever SMs finish CTAs, new CTAs can be
scheduled. In this paper, we also leverage RR as the baseline
scheduling policy.

III. MOTIVATION

Efficient GPU memory utilization is critical to avoid the
long latency of page faults, especially when the GPU mem-
ory is oversubscribed. Fig.3 shows the average performance
degradation due to memory oversubscription for applications
with inter-kernel data sharing. We make two observations.
First, such applications suffer from an average of 198.4%
and 183.4% performance loss when 75% of the total memory
footprint fit in the GPU memory and when the oversubscrip-
tion ratio varies from 50% to 95%, respectively. Second,
the performance impact of memory oversubscription to such
applications is insensitive to the degree of oversubscription,
indicating that the performance of such applications degrades
drastically once the memory is oversubscribed.

0

1

2

3

4

50% 75% 80% 85% 90% 95%

R
un

tim
e 

N
or

m
al

iz
ed

 to
 

N
o 

O
ve

rs
ub

sc
rip

tio
n

Oversubscription Ratio

0.9096

Fig. 3. Impact of memory oversubscription to the performance of applications
with inter-kernel data sharing. The performance drop is only 0.9096 when the
oversubscription ratio decreases from 95% to 50%.)

Fig.4 shows both the page access pattern and page fault
rate of FFT when the GPU memory can only fit 75% of
its footprint. We find that each kernel has a similar access
pattern and sequence. As shown in the Fig.4 with blue circles,
there are amounts of page faults at the boundary of kernels.
When a new kernel is launched, all new threads are dispatched
to SMs in the GPU and start accessing those pages at the
same time. However, all these pages have been evicted due to
memory oversubscription at the end of the last kernel shown
in Fig.4. Moreover, since the kernel is newly launched, all
dispatched threads are seeking new pages together. It causes
these large amounts of page faults. In order to reduce the
number of page migrations under the oversubscribed GPU
memory, previous works [10]–[13] have been proposed to
reduce the migration overhead by prefetching [11], [12], over-
lapping eviction latency with paging [10] and batched faulting
pages together [13]. However, these techniques provide little
performance benefit for inter-kernel data sharing applications.
Prefetching would cause severe thrashing for such applications
because it may evict used pages proactively. Proactive eviction

can hide some eviction latency, but it cannot help with
reducing such page faults. Batched faulting pages is effective
in amortizing the page fault overhead, but it is useless for
regular applications with streaming access pattern.

0%

20%

40%

60%

80%

100%

0

1500000

3000000

4500000

6000000

0 200 400 600 800 1000

Pa
ge

 F
au

lt 
R

at
e

Pa
ge

 ID

Cycle Count (×10k)

Page ID Page Fault Rate
K1 K2 K3 K4 K5 K6 K7 K8

Fig. 4. Page access pattern and page fault rate of FFT when 75% of the
footprint can be fit into the memory (kernels within FFT access the same
pages in the same sequence as shown by the black dots; dashed line represents
the end of each kernel; page fault rate is high at the boundary of neighbored
kernels as shown in the circled regions).

In summary, we make two observations for applications
with inter-kernel data sharing. First, once memory is over-
subscribed, shared data reusing is broken at the boundary of
kernels and the performance drops sharply due to thrashing.
Second, previous works have not considered data reuse issues
for inter-kernel data sharing under memory oversubscription.
Therefore, the goal of this paper is to alleviate the overhead
of memory oversubscription through reusing the shared data.

0%

20%

40%

60%

80%

100%

0

1500000

3000000

4500000

6000000

0 115 230 345 460 575

Pa
ge

 F
au

lt 
R

at
e

Pa
ge

 ID

Cycle Count (×10k)

Page ID Page Fault Rate

47.8 93.3
K1 K2 K3 K4 K5 K6 K7 K8

(a) DispatchSwitch is applied (page fault rate is low at the boundary of
neighbored kernels but the odd-round kernels cost more time than the even-
round kernels)

0%

20%

40%

60%

80%

100%

0

1500000

3000000

4500000

6000000

0 50 100 150 200 250 300 350 400

Pa
ge

 F
au

lt 
R

at
e

Pa
ge

 ID

Cycle Count (×10k)

44.8 41.8
K1 K2 K3 K4 K5 K6 K7 K8

(b) CPC is applied (execution time of the odd-round kernels is reduced a
lot)

Fig. 5. Page access pattern and page fault rate of FFT using DispatchSwitch
and CPC when 75% of the footprint can be fit into the GPU memory (kernels
within FFT access the same pages at the same sequence as shown by the
black dots; dashed line represents the end of each kernel).



IV. CPC DESIGN

Based on the analysis in Section III, we observe that
coordinating CTAs and the remaining data in the memory is
a key solution to reduce the page fault rate at the boundary of
kernels. This observation guides the design of the CTA-Page
collaborative framework, CPC. The key principle of CPC is to
1) dispatch related CTAs first to reuse the data remained in the
memory through CTA dispatch switching (Section IV-A) and
2) replace useless pages to cooperate with the corresponding
CTA dispatching strategy through page replacement switching
(Section IV-B).

Dispatch

0

n-1

Mux

CTA Dispatching Strategy

SWITCH

Dispatch

SM SM

CTA Scheduler

SM...

Interconnect Network

L2 Cache L2 Cache...

Memory 
Partition

Memory 
Partition

GPU

MC MC

NVLink/PCI-e

SWITCH

...

...

CPU 
MemoryBridge

HOST

CPU

GPU Driver

Command Processor

Eviction

Head

Tail

Mux

Page Replacement Policy

SWITCH

Allocation

Allocation

Eviction

❶
GPU Command Queue

Page List

C
TA

 Pending Pool

C
TA

 Pending Pool

Page List

❷

Fig. 6. Architecture of CPC (¶: CTA Dispatch Switching; ·: Page Replace-
ment Switching)

0%

50%

100%

150%

200%

250%

Baseline ETC DispatchSwitch Oracle

N
or

m
al

iz
ed

 IP
C

 to
 

B
as

el
in

e 20.2%

58.5%

Fig. 7. Performance of DispatchSwitch, ETC, Oracle normalized to the
baseline.

A. CTA Dispatch Switching

However, how to find the CTAs related to the pages in the
memory becomes our first design challenge. Observed from
applications with inter-kernel sharing, we find that most of
these applications have similar access patterns among different
kernels, which is also shown in the Fig.4. Within each kernel,
such page access behavior is strongly related to the CTA
scheduling scheme, since each thread typically uses thread ID
and associated CTA ID to identify the data that it operates on.

To this end, we propose a CTA dispatch switching mecha-
nism, called DispatchSwitch. It simply switches the dispatch-
ing order of CTAs whenever a new kernel is launched to utilize

the remaining data in the GPU memory. As shown in ¶ of
Fig.6, the switch flag denoted as SWITCH is reset when a new
context is created and is reversed by the command processor
whenever a new kernel is launched. For each kernel, the
CTA scheduler selects corresponding CTA dispatching strategy
based on the SWITCH. When SWITCH equals 0, CTAs of the
current kernel are dispatched in ascending order otherwise in
descending order. Thereby remaining data in the GPU memory
is utilized effectively by the following kernel.

To show the effectiveness of this mechanism, we compare it
against the state-of-the-art framework, called ETC, which fo-
cuses on reducing the impact of memory oversubscription [10].
We also introduce an oracle design in which all shared data
between neighbored kernels within the GPU memory is reused.
Fig.7 presents the average performance of DispatchSwitch,
ETC and Oracle normalized to the baseline using the default
configurations as shown in Table I. Page access pattern and
page fault rate of FFT using DispatchSwitch are shown in
Fig.5(a). We make three observations from these figures.
First, compared to ETC [10], DispatchSwitch improves the
performance by 20.2% on average in line with the page
fault reduction at the boundary of kernels. It means that
DispatchSwitch is effective in reusing shared data. Second,
DispatchSwitch performs 58.5% worse than Oracle, indicating
there is an opportunity to further reuse the shared data. Third,
an interesting finding is that the execution time of the even-
round kernels is shorter than that of the odd-round kernels
as shown in the Fig.5(a). It leads us to further dig into the
difference between the odd and even rounds of kernels.

We create and analyze the execution process of a simple
workload with multiple kernels which access the same data as
shown in Fig.8. In order to simplify our analysis, we make
several assumptions as shown in Fig.8. We first analyze the
execution process of the baseline as shown in Fig.8(a). Kernels
are launched sequentially and CTAs are also dispatched in
ascending order. At first, requested pages are loaded into the
empty GPU memory. Due to the limited memory capacity
and age-based LRU page replacement policy (first loaded,
first evicted) [22], the earlier loaded pages are evicted first to
make room for new pages. Therefore, throughout the whole
execution process, no data requests hit in the GPU memory,
leading to performance degradation consistent with Fig.3.

When DispatchSwitch is applied, the execution process
is shown in Fig.8(b). Different from the baseline, the CTA
dispatching sequences are switched every kernel. We make
two observations. First, there are fewer page faults at the
boundary of kernels compared to the baseline consistent with
the page faults reduction at the boundary (Fig.5(a)). Second,
for odd-round kernels, the remaining data is not fully reused
accounting for the performance gap with the oracle case. In
summary, switching the CTA dispatching sequence can pro-
vide a significant performance benefit, but it still cannot fully
utilize the remaining data in the GPU memory. Coordinating
the page replacement policy with DispatchSwitch is key to
bridge such a performance gap.



CPU Memory GPU Memory Hit Page Miss Page

P5

P4

P3

P2

P1
Time

...

Kernel A Kernel B Kernel C Kernel D Kernel E
C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

(a) Execution process of the baseline

P5

P4

P3

P2

P1
Time

...

C1 C2 C3 C4 C5 C5 C4 C3 C2 C1 C1 C2 C3 C4 C5 C5 C4 C3 C2 C1 C1 C2 C3 C4 C5

(b) Execution process of DispatchSwitch

Time

P5

P4

P3

P2

P1

...

C1 C2 C3 C4 C5 C5 C4 C3 C2 C1 C1 C2 C3 C4 C5 C5 C4 C3 C2 C1 C1 C2 C3 C4 C5

(c) Execution process of CPC

Fig. 8. Execution process of the microbenchmark (To simplify the analysis,
we make the following assumptions. 1) Only one CTA can run at the same
time. 2) Five kernels (A, B, C, D, E) access the same data and each
kernel consists of five CTAs (C1-C5) accessing only one data page (P1-P5,
respectively). 3) the GPU memory capacity is 3 pages.).

B. Page Replacement Policy Switching

As discussed in Section IV-A, odd-round kernels underuti-
lize the shared data, as DispatchSwitch may mismatch with
the age-based LRU policy. The right part of · in Fig.6 shows
how age-based LRU policy works. To provide the support of
demand paging, the GPU driver within the host maintains a
single list on recording migration order of pages from the
CPU memory to the GPU memory. Although it cannot show
the access order of pages, it maintains the migration order with
low overhead when compared with ideal LRU [23]. Since our
CTA scheduler switches the execution order for each kernel,
traditional age-based LRU policy cannot cooperate with CTA
scheduling mechanism anymore. As shown in Fig.8(b), Page
3 (P3) is evicted instead of Page 5 (P5) at the C2 of Kernel
B according to the age-based LRU policy. However, P5 is the
old page in Kernel B, which is preferred to be evicted.

To address this issue, we propose a page replacement
policy switching mechanism, called ReplacementSwitch, as
shown in · of Fig.6. ReplacementSwitch introduces a new
page replacement policy, called reverse age-based LRU policy
shown in the left part of · in Fig.6. Different from age-based
LRU, the direction of both page eviction and page allocation
is switched. Similar to DispatchSwitch, the GPU driver selects
the corresponding page replacement policy based on SWITCH.
When SWITCH equals 0, the GPU driver applies age-based
LRU as page replacement policy, otherwise reverse age-based
LRU is applied. At this time, CTA dispatching strategy and
page replacement policy change simultaneously to cooperate
for effective data reuse whenever a new kernel is launched.

Fig.8(c) shows the execution process of the microbenchmark

introduced in the previous section when both DispatchSwitch
and ReplacementSwitch (this combination is denoted as CPC),
are applied. As expected, Page 5 (P5) is evicted at the C2 of
Kernel B according to the reverse age-based LRU. Therefore,
all the remaining pages within the GPU memory are utilized
by Kernel C with no page faults at the boundary of kernels.
Fig.5(b) shows the page access pattern and page fault rate
of FFT using CPC. We make two observations. First, the
performance of odd-round kernels is improved significantly,
leading to better overall performance than the case only using
DispatchSwitch shown in Fig.5(a). Second, more remaining
pages are reused resulting in fewer page faults at the boundary
of kernels. We conclude that CPC is effective at reducing page
faults at the boundary of kernels via reusing the shared data.

V. METHODOLOGY

We extend the GPGPU-Sim v4.0.0 [24] in our experiments.
The configurations of the GPU system including both cores
and memory are shown in TABLE I.

TABLE I
CONFIGURATIONS OF THE SIMULATED SYSTEM

GPU Core Configurations
GPU Arch NVIDIA RTX-2060 Turing-like
GPU Cores 30 CUs @ 1.4GHz, 32 threads per warp,

4 GTO scheduler
Private L1 Caches 64KB/CU, fully associative, LRU
Shared L2 Caches Memory Side 256KB/DRAM Channel,

16-way associative, LRU

Memory System Configurations
DRAM GDDR6, 12-channel, FR-FCFS scheuler,

RCD=RP=20, RC=62, CL=WR=20
Unified Memory 4KB page size, 20µs page fault latency,

16 GB/s PCIe bandwidth

Demand Paging and Oversubscription. We faithfully model
demand paging between the CPU memory and the GPU mem-
ory. Whenever data absent in the GPU memory is requested,
page faults are generated and the GPU driver resident in the
host serves this exception by sending the required pages to the
GPU. If the GPU memory is full, pages in the memory should
be evicted based on the page replacement policy via the GPU
driver. To experiment under different memory oversubscription
degrees, the capacity of the GPU memory is configured to
fractions (from 75% to 95%) of each workload’s footprint.
Workloads. We select 12 applications from CUDA SDK [9],
Rodinia [5], Parboil [6], Ispass [7] and Polybench [8] bench-
mark suites. The footprint of these workloads varies from
1MB to 96MB with an average of 18.5MB. Limited simulating
speed hinders us from emulating a larger footprint.
Evaluation Metrics. We use normalized IPC to evaluate the
performance of proposed mechanisms. To report the data reuse
rate, we introduce a formula defined as Accessshared

AccessTotal
, where

Accessshared is the number of accesses requesting the inter-
kernel shared pages and AccessTotal is the number of total



accesses. Page fault rate is used to illustrate the stability of the
memory system when the GPU memory is oversubscribed.

VI. EVALUATION

We evaluate both DispatchSwitch (denoted as CPC-Disp)
and CPC via comparing them against four designs: 1) baseline
2) ETC [10] 3) Oracle 4) an ideal baseline with unlimited
GPU memory. Since above designs are all orthogonal to ETC,
we also evaluate these designs when equipped with ETC. The
configurations of these designs are shown in TABLE II.

A. Performance

Fig.9 shows the average IPC normalized to the baseline
with our proposed mechanisms. From the figure, we make
four observations. First, the state-of-the-art mechanism ETC
shows modest benefit with an average of 15% performance
improvement. As Section III states, the performance of ap-
plications with inter-kernel data sharing degrades significantly
once the GPU memory is oversubscribed. Therefore memory
compression hardly works. Second, CPC outperforms the
baseline and ETC by 90% and 65% respectively and obtains
a similar performance benefit to Oracle, indicating that CPC
can reuse the inter-kernel shared data effectively. Third, CPC
outperforms DispatchSwitch by 37.3%, illustrating that both
DispatchSwitch and ReplacementSwitch play important roles.
Last, all methods equipped with ETC improve the performance
further, showing that CPC and ETC are orthogonal with each
other which can work together.

0
0.5

1
1.5

2
2.5

3
3.5

N
or

m
al

iz
ed

 IP
C

 to
 B

as
el

in
e

Fig. 9. Overall performance normalized to the baseline.

Individual Workload Performance. Fig.10 shows the per-
formance of CPC and the other techniques normalized to the
baseline across multiple workloads. We make three observa-
tions. First, performance across all of the workloads has been
improved with CPC compared to the baseline, especially for
SRADV2 (330%) and SPMV (292%). Second, for most of
the workloads, CPC outperforms ETC and DispatchSwitch
and obtains a similar performance to the oracle case. Third,
there is little performance improvement for some applications
like BFS, 3DCONV and FWT when CPC is applied because
little shared data between neighbored kernels leaves little
room for improvement. We conclude that CPC is effective at
reducing the performance impact of memory oversubscription
for applications with inter-kernel data reuse.

B. Page Fault Rate

We next investigate where such significant performance
improvement originates from through quantifying the page
fault rate as shown in Fig.11, from which we make three
observations. First, in line with the performance results de-
scribed in the previous section, we observe that CPC reduces
the page fault rate across all the workloads and there is an
average reduction of 87.3% and up to 266.3% (SRADV2).
Second, for most of the applications, there is little page fault
rate reduction when ETC is applied since such applications
are insensitive to the memory size under the oversubscribed
memory as stated in Section III. Third, the page fault rate
of BFS even under the baseline is low, indicating that there
remains little performance improvement space, consistent with
the results just described.

C. Data Reuse Rate

We further investigate where the page fault reduction is
coming from. We quantify the data reuse rate when 75% of the
footprint fits in the GPU memory (used in ETC [10]) as shown
in Fig.12. From the figure, We make three observations. First,
little shared data is reused for the baseline for most of the
applications as shown in Fig.8(a). Second, CPC provides an
average of 56.7% data reuse rate and up to 74.9% (SRADV2),
which is consistent with the page fault rate reduction stated in
the last section because more data to be reused leads to fewer
page faults. Third, when equipped with ETC, CPC can deliver
an average of 75.4% data reuse rate and up to 90% (SRADV2),
indicating that almost all the shared data is reused.

D. Sensitivity Analysis

In this section, we measure the sensitivity of CPC’s effec-
tiveness to the degree of memory oversubscription, the page
size and the page fault handling latency.
Memory Oversubscription Ratio. From Fig.3, we find that
different memory oversubscription ratios have similar impacts
on the performance. Fig.13(a) shows the performance im-
provement of CPC when the memory oversubscription ratio
varies from 75% (i.e., only 75% of each workload’s working
set can fit in the GPU memory) to 100% (i.e., there is no
memory oversubscription). We observe that the performance
benefit CPC brings increases as the GPU memory becomes
larger because more data remained in the GPU memory can
be reused. We conclude that CPC can provide amounts of
performance benefit under the oversubscribed GPU memory.
Page Size. Page size plays a critical role in the virtual memory
traffic observed on both CPUs and GPUs. Fig.13(b) shows
the average performance benefit of CPC when page size
changes from 1KB to 32KB normalized to the baseline. We
observe that the performance improvement decreases as the
page size becomes larger. Applications access less pages as
the page becomes larger leading to less page faults and less
page migrations when the GPU memory is oversubscribed.
Though there remains little improvement space to reduce the
page faults for applications with larger pages, results shows



TABLE II
CONFIGURATIONS OF DIFFERENT DESIGNS

Design Memory Oversubscription CTA Scheduling Page Replacement Memory Compression Proactive Eviction
Baseline 3 RR in ascending order Age-based LRU 7 7

ETC 3 RR in ascending order Age-based LRU 3 3

CPC-Disp 3 DispatchSwitch Age-based LRU 7 7

CPC 3 DispatchSwitch ReplacementSwitch 7 7

Oracle 3 RR in ascending order Data accessed before hit 7 7

CPC-Disp + ETC 3 DispatchSwitch Age-based LRU 3 3

CPC + ETC 3 DispatchSwitch ReplacementSwitch 3 3

Oracle + ETC 3 RR in ascending order Data accessed before hit 3 3

Ideal 7 RR in ascending order Age-based LRU 7 7

0

1

2

3

4

HOTSPOT FFT SRADV2 3DS BFS BLK RED SPMV STENCIL LPS 3DCONV FWT AverageN
or

m
al

iz
ed

 IP
C

 to
 

B
as

el
in

e

Baseline ETC CPC-Disp CPC Oracle CPC-Disp+ETC CPC+ETC Oracle+ETC

Fig. 10. Overall performance normalized to the baseline for different applications.

0%

20%

40%

60%

80%

100%

HOTSPOT FFT SRADV2 3DS BFS BLK RED SPMV STENCIL LPS 3DCONV FWT Average

Pa
ge

 F
au

lt 
R

at
e

Baseline ETC CPC-Disp CPC Oracle CPC-Disp+ETC CPC+ETC Oracle+ETC

Fig. 11. Page fault rate for different applications.

0%

20%

40%

60%

80%

100%

HOTSPOT FFT SRADV2 3DS BFS BLK RED SPMV STENCIL LPS 3DCONV FWT Average

D
at

a 
R

eu
se

 R
at

e

Baseline ETC CPC-Disp CPC CPC-Disp+ETC CPC+ETC

Fig. 12. Data reuse rate for different applications.

our mechanism is still successful in alleviating the impact of
memory oversubscription.

Page Fault Latency. The page fault latency is critical to the
performance especially when the memory is oversubscribed.
To understand the impact of such latency, we perform sensi-
tiveness studies. Fig.13(c) presents the average performance
improvement with CPC when the page fault latency is varied
from 20µs to 50 µs normalized to the configuration with 20µs
fault latency. We observe that CPC can always brings signif-
icant performance improvement with any page fault latency
because it focuses on reducing page faults and is insensitive

to the page fault latency, which shows the effectiveness of our
approach in reducing the impact of memory oversubscription.

E. Hardware Overhead

We analyze the hardware overhead to support each compo-
nent of CPC. To implement DispatchSwitch, the CTA sched-
uler needs extending with corresponding control logic with
almost no hardware overhead to support two CTA dispatching
strategies. ReplacementSwitch is implemented in the GPU
driver with no hardware overhead. Besides, a single bit is
added to the command processor to indicate which strategy to



0

1

2

3

75% 85% 95% 100%

N
or

m
al

iz
ed

 IP
C

 to
 

B
as

el
in

e

Oversubscription Ratio

(a) Sensitivity of performance to memory over-
subscription ratio

1

1.4

1.8

2.2

1K 2K 4K 8K 16K 32KN
or

m
al

iz
ed

 IP
C

 to
 

B
as

el
in

e

Page Size (Byte)

(b) Sensitivity of performance to page size

0.8

0.9

1

1.1

20 30 40 50

N
or

m
al

iz
ed

 IP
C

 to
 

20
μs

 F
au

lt 
La

te
nc

y

Page Fault Latency (μs)

(c) Sensitivity of performance to page fault la-
tency

Fig. 13. Sensitivity studies for CPC

select for both DispatchSwitch and emphReplacementSwitch.
Overall, hardware overheads for our design are negligible.

VII. RELATED WORK

To the best of our knowledge, this paper is the first to
reuse the inter-kernel shared data to improve the performance
under the oversubscribed memory. We survey related works
in GPU memory oversubscription, CTA scheduling, exploiting
data locality and replacement policies.
GPU Memory Oversubscription. Kim et al. [13] show the
high cost of page faults and propose a scheme to increase the
number of page faults handled together to amortize the fault
handling latency across multiple pages. Ganguly et al. [25]
propose a programmer-agnostic scheme to decide whether to
copy the data from the CPU memory to the GPU memory
based on the classification of applications. Garcı́a-Flores [26]
et al. propose a fine-grained data transferring scheme to make
the most use of limited bandwidth, reduce the transmission
delay and alleviate memory contention. Zheng [11] et al.
propose a scheme to hide the long latency by viewing the page
fault as the store operation. The above methods all focus on
how to reduce the impact of the page fault and none consider
the data reuse among kernels. These approaches are orthogonal
to our work.
CTA Scheduling. Several works explore inter-CTA locality
via scheduling the CTAs properly [15]–[19]. Li et al. [15]
propose a software scheme that relocates CTAs which share
data to the same SM to utilize the inter-CTA locality based on
the inherent scheduling policy of real GPU hardware. Wang
et al. [16] deliver consecutive CTAs to the same cluster to
coalesce requests to the same data and reduce the redundant
traffic. Lee et al. [18] dispatch a group of two adjacent CTAs to
the same SM to improve the L1 performance. Chen et al. [19]
modify the CTA scheduling policy to improve the inter-CTA
locality. None of these works explore the inter-kernel locality.
Huzaifa et al. [17] deploy several CTA scheduling policies to
utilize inter-kernel locality within L1 cache, but they do not
consider how to utilize such locality within the GPU memory
to reduce the performance impact of memory oversubscription.
Exploiting Data Locality. Ang et al. [15] and Wang et
al. [16] schedule a group of CTAs each time to utilize inter-
CTA locality. Tabbakh et al. [27] propose a share-aware
cache scheme that maintains private data in the L1 cache and
shared data in the L2 cache. Vijaykumar et al. [28] propose
a hardware and software cooperative scheme to utilize the

data locality marked explicitly. These techniques targets intra-
kernel locality but are orthogonal to our designs since we
focus on inter-kernel locality. Huzaifa et al. [17] utilize inter-
kernel data locality within the L1 cache through several simple
schemes. Due to the small L1 cache size, it performs badly
for kernels with a large working set. Our research coordinates
both the CTA scheduling policy and the replacement policy to
exploit inter-kernel locality.
Replacement Policies. Lots of works research in replacement
policy for cache and memory in both CPU and GPU [29], [30].
LRU (Least Recent Used) [23] is widely used and performs
well in the cache system. While for global memory, it is
unrealistic to implement LRU due to its expensive cost. Some
variants like NRU (Not Recently Used) [31] and CLOCK
(Second Chance Replacement) [32] are commonly used. These
policies perform well for applications with strong temporal
locality while performing badly for those with thrashing access
patterns. LFU (Least Frequently Used) [33] and DIP (Dynamic
Insertion Policy) [34] target workloads with large working set
and thrashing access patterns. Q. Yu et al. [35] propose a
hierarchical page eviction scheme which selects proper page
eviction policy for each application detected at runtime. To
protect intra-warp locality, Koo el al. [36] propose access
pattern-aware cache management scheme, which bypasses
streaming accesses and protects frequently used data from
being evicted. These policies except LRU do not match with
our design but can be employed to the cache system.

VIII. CONCLUSION

Applications with inter-kernel data sharing suffer from
great performance loss under memory oversubscription. To
alleviate such performance degradation, we propose CPC,
an application-transparent framework that coordinates CTA
dispatching strategy and page replacement policy to effectively
reuse the shared data for reducing the performance impact
of memory oversubscription. CPC reduces the page fault rate
by an average of 87.3% compared to the baseline, leading to
an average 90% and 65% performance improvement than the
baseline and the state-of-the-art memory management frame-
work ETC, respectively. We conclude that CPC is an effective
low-cost framework to exploit inter-kernel data sharing.

ACKNOWLEDGMENT

We thank the anonymous reviewers from ICCAD 2021. This
work is supported by Research Project of NUDT ZK20-04.



REFERENCES

[1] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, X. Wang, and Ieee, Applied Machine
Learning at Facebook: A Datacenter Infrastructure Perspective, ser.
International Symposium on High-Performance Computer Architecture-
Proceedings. Institute of Electrical and Electronics Engineers, 2018,
pp. 620–629.

[2] B. Tekin, S. N. Sinha, P. Fua, and Ieee, Real-Time Seamless Single
Shot 6D Object Pose Prediction, ser. IEEE Conference on Computer
Vision and Pattern Recognition. Institute of Electrical and Electronics
Engineers, 2018, pp. 292–301.

[3] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: Residual learning of deep cnn for image denoising,” Ieee
Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155, 2017.

[4] T. C. Schroeder, “Peer-to-peer & unified virtual addressing,” in GPU
Technology Conference, NVIDIA, 2011.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization
(IISWC). Institute of Electrical and Electronics Engineers, 2009, pp.
44–54.

[6] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
Center for Reliable and High-Performance Computing, vol. 127, 2012.

[7] M. Giles, “Jacobi iteration for a laplace discretisation on a 3d structured
grid,” 2008.

[8] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,
“Auto-tuning a high-level language targeted to gpu codes,” in 2012
innovative parallel computing (InPar). Ieee, 2012, pp. 1–10.

[9] N. Corp., “Nvidia cuda sdk code samples,” % url-
http://developer.nvidia.com/.

[10] C. Li, R. Ausavarungnirun, C. J. Rossbach, Y. Zhang, O. Mutlu, Y. Guo,
J. Yang, and Acm, A Framework for Memory Oversubscription Man-
agement in Graphics Processing Units, ser. Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems. Association for Computing Machinery, 2019.

[11] T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson, and S. W. Keckler,
“Towards high performance paged memory for gpus,” in 2016 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). Institute of Electrical and Electronics Engineers, 2016,
Conference Proceedings, pp. 345–357.

[12] Q. Yu, B. Childers, L. Huang, C. Qian, H. Guo, and Z. Wang,
“Coordinated page prefetch and eviction for memory oversubscription
management in gpus,” in 2020 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). Institute of Electrical and
Electronics Engineers, 2020, pp. 472–482.

[13] H. Kim, J. Sim, P. Gera, R. Hadidi, H. Kim, and Acm, Batch-Aware
Unified Memory Management in GPUs for Irregular Workloads, ser.
Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems. Association for
Computing Machinery, 2020.

[14] J. J. K. Park, Y. Park, and S. Mahlke, “Dynamic resource management
for efficient utilization of multitasking gpus,” in Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
527–540.

[15] A. Li, S. L. Song, W. Liu, X. Liu, A. Kumar, and H. Corporaal,
“Locality-aware cta clustering for modern gpus,” Operating Systems
Review, vol. 51, no. 2, pp. 297–311, 2017.

[16] L. Wang, X. Zhao, D. Kaeli, Z. Wang, and L. Eeckhout, “Intra-cluster
coalescing and distributed-block scheduling to reduce gpu noc pressure,”
Ieee Transactions on Computers, vol. 68, no. 7, pp. 1064–1076, 2019.

[17] M. Huzaifa, J. Alsop, A. Mahmoud, G. Salvador, M. D. Sinclair, and
S. V. Adve, “Inter-kernel reuse-aware thread block scheduling,” ACM
Trans. Archit. Code Optim., vol. 17, no. 3, Aug. 2020.

[18] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu,
“Improving gpgpu resource utilization through alternative thread block
scheduling,” in 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA). Institute of Electrical
and Electronics Engineers, 2014, pp. 260–271.

[19] L. Chen, H. Cheng, P. Wang, and C. Yang, “Improving gpgpu per-
formance via cache locality aware thread block scheduling,” IEEE
Computer Architecture Letters, vol. 16, no. 2, pp. 127–131, 2017.

[20] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T.
Kandemir, O. Mutlu, R. Iyer, and C. R. Das, “Owl: cooperative thread
array aware scheduling techniques for improving gpgpu performance,”
ACM SIGPLAN Notices, vol. 48, no. 4, pp. 395–406, 2013.

[21] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “Laperm: Locality
aware scheduler for dynamic parallelism on gpus,” in 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2016, pp. 583–595.

[22] M. Knap and P. Czarnul, “Performance evaluation of unified memory
with prefetching and oversubscription for selected parallel cuda applica-
tions on nvidia pascal and volta gpus,” The Journal of Supercomputing,
vol. 75, no. 11, pp. 7625–7645, 2019.

[23] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems journal, vol. 5, no. 2, pp. 78–101, 1966.

[24] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-sim:
An extensible simulation framework for validated gpu modeling,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2020, pp. 473–486.

[25] D. Ganguly, Z. Zhang, J. Yang, and R. Melhem, “Adaptive page
migration for irregular data-intensive applications under gpu memory
oversubscription,” in 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2020, pp. 451–461.

[26] V. Garcia-Flores, E. Ayguadé, and A. J. Peña, “Efficient data sharing
on heterogeneous systems,” in 2017 46th International Conference on
Parallel Processing (ICPP). IEEE, 2017, pp. 121–130.

[27] A. Tabbakh, M. Annavaram, X. Qian, and Ieee, Power Efficient Sharing-
Aware GPU Data Management, ser. International Parallel and Dis-
tributed Processing Symposium IPDPS. Institute of Electrical and
Electronics Engineers, 2017, pp. 698–707.

[28] N. Vijaykumar, E. Ebrahimi, K. Hsieh, P. B. Gibbons, O. Mutlu, and
Ieee, The Locality Descriptor: A Holistic Cross-Layer Abstraction to
Express Data Locality in GPUs, ser. Conference Proceedings Annual
International Symposium on Computer Architecture. Institute of
Electrical and Electronics Engineers, 2018, pp. 829–842.

[29] X. Zhao, M. Jahre, and L. Eeckhout, “Selective replication in memory-
side gpu caches,” in 2020 53rd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), 2020, pp. 967–980.

[30] X. Zhao, A. Adileh, Z. Yu, Z. Wang, A. Jaleel, and L. Eeckhout,
“Adaptive memory-side last-level gpu caching,” in 2019 ACM/IEEE
46th Annual International Symposium on Computer Architecture (ISCA),
2019, pp. 411–423.

[31] I. Sun Microsystems, “Ultrasparc t2 supplement to the ultrasparc archi-
tecture 2007.”

[32] S. Bansal and D. S. Modha, “Car: Clock with adaptive replacement.” in
FAST, vol. 4, 2004, pp. 187–200.

[33] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim, “Lrfu: A spectrum of policies that subsumes the least recently
used and least frequently used policies,” IEEE Computer Architecture
Letters, vol. 50, no. 12, pp. 1352–1361, 2001.

[34] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adap-
tive insertion policies for high performance caching,” ACM SIGARCH
Computer Architecture News, vol. 35, no. 2, pp. 381–391, 2007.

[35] Q. Yu, B. Childers, L. Huang, C. Qian, Z. Wang, and Ieee, Hierarchical
Page Eviction Policy for Unified Memory in GPUs, ser. 2019 Ieee
International Symposium on Performance Analysis of Systems and
Software. Institute of Electrical and Electronics Engineers, 2019.

[36] G. Koo, Y. Oh, W. W. Ro, and M. Annavaram, “Access pattern-
aware cache management for improving data utilization in gpu,” in
2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), 2017, Conference Proceedings, pp. 307–319.


