
The Virtual Block Interface: A Flexible Alternative

to the Conventional Virtual Memory Framework

Nastaran Hajinazar�† Pratyush Patel�� Minesh Patel� Konstantinos Kanellopoulos� Saugata Ghose‡
Rachata Ausavarungnirun� Geraldo F. Oliveira� Jonathan Appavoo� Vivek Seshadri� Onur Mutlu�‡

�ETH Zürich †Simon Fraser University ��University of Washington ‡Carnegie Mellon University
�King Mongkut’s University of Technology North Bangkok �Boston University �Microsoft Research India

Computers continue to diversify with respect to system de-
signs, emerging memory technologies, and application memory
demands. Unfortunately, continually adapting the conventional
virtual memory framework to each possible system configura-
tion is challenging, and often results in performance loss or
requires non-trivial workarounds.

To address these challenges, we propose a new virtual mem-
ory framework, the Virtual Block Interface (VBI). We design VBI
based on the key idea that delegating memory management
duties to hardware can reduce the overheads and software com-
plexity associated with virtual memory. VBI introduces a set of
variable-sized virtual blocks (VBs) to applications. Each VB is
a contiguous region of the globally-visible VBI address space,
and an application can allocate each semantically meaningful
unit of information (e.g., a data structure) in a separate VB. VBI
decouples access protection frommemory allocation and address
translation. While the OS controls which programs have access
to which VBs, dedicated hardware in the memory controller
manages the physical memory allocation and address trans-
lation of the VBs. This approach enables several architectural
optimizations to (1) efficiently and flexibly cater to different and
increasingly diverse system configurations, and (2) eliminate
key inefficiencies of conventional virtual memory.
We demonstrate the benefits of VBI with two important use

cases: (1) reducing the overheads of address translation (for
both native execution and virtual machine environments), as
VBI reduces the number of translation requests and associated
memory accesses; and (2) two heterogeneous main memory
architectures, where VBI increases the effectiveness of managing
fast memory regions. For both cases, VBI significantly improves
performance over conventional virtual memory.

1. Introduction

Virtual memory is a core component of modern computing
systems [28, 38, 63]. Virtual memory was originally designed
for systems whose memory hierarchy fit a simple two-level
model of small-but-fast main memory that can be directly
accessed via CPU instructions and large-but-slow external
storage accessed with the help of the operating system (OS).
In such a configuration, the OS can easily abstract away the
underlying memory architecture details and present applica-
tions with a unified view of memory.
However, continuing to efficiently support the conven-

tional virtual memory framework requires significant effort
due to (1) emerging memory technologies (e.g., DRAM–NVM
hybrid memories), (2) diverse system architectures, and (3) di-
verse memory requirements of modern applications. The
OS must now efficiently meet the wide range of application
memory requirements that leverage the advantages offered
by emerging memory architectures and new system designs
while simultaneously hiding the complexity of the underlying

memory and system architecture from the applications. Un-
fortunately, this is a difficult problem to tackle in a generalized
manner. We describe three examples of challenges that arise
when adapting conventional virtual memory frameworks to
today’s diverse system configurations.
Virtualized Environments. In a virtual machine, the

guest OS performs virtual memory management on the emu-
lated “physical memory” while the host OS performs a second
round of memory management to map the emulated physical
memory to the actual physical memory. This extra level of in-
direction results in three problems: (1) two-dimensional page
walks [14, 39, 40, 85, 99, 112], where the number of memory
accesses required to serve a TLB miss increases dramatically
(e.g., up to 24 accesses in x86-64 with 4-level page tables);
(2) performance loss in case of miscoordination between the
guest and host OS mapping and allocation mechanisms (e.g.,
when the guest supports superpages, but the host does not);
and (3) inefficiency in virtualizing increasingly complex phys-
ical memory architectures (e.g., hybrid memory systems) for
the guest OS. These problems worsen with more page table
levels [53], and in systems that support nested virtualization
(i.e., a virtual machine running inside another) [36, 43].

Address Translation. In existing virtual memory frame-
works, the OS manages virtual-to-physical address mapping.
However, the hardware must be able to traverse these map-
pings to handle memory access operations (e.g., TLB lookups).
This arrangement requires using rigid address-translation
structures that are shared between and understood by both
the hardware and the OS. Prior works show that many ap-
plications can benefit from flexible page tables, which cater
to the application’s actual memory footprint and access pat-
terns [4, 11, 33, 58]. Unfortunately, enabling such flexibility
in conventional virtual memory frameworks requires more
complex address translation structures every time a new ad-
dress translation approach is proposed. For example, a recent
work [11] proposes using direct segments to accelerate big-
memory applications. However, in order to support direct
segments, the virtual memory contract needs to change to
enable the OS to specify which regions of memory are di-
rectly mapped to physical memory. Despite the potential
performance benefits, this approach is not easily scalable to
today’s increasingly diverse system architectures.
Memory Heterogeneity. Prior works propose many

performance-enhancing techniques that require (1) dynami-
cally mapping data to different physical memory regions ac-
cording to application requirements (e.g., mapping frequently-
accessed data to fast memory), and (2) migrating data when
those requirements change (e.g., [22,23,29,57,64,73,74,78,80,
82,103,106–108,124,134,138]). Efficiently implementing such
functionality faces two challenges. First, a customized data
mapping requires the OS to be aware of microarchitectural
properties of the underlying memory. Second, even if this can

1050

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)

978-1-7281-4661-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ISCA45697.2020.00089

be achieved, the OS has low visibility into rich fine-grained
runtime memory behavior information (e.g., access pattern,
memory bandwidth availability), especially at the main mem-
ory level. While hardware has access to such fine-grained
information, informing the OS frequently enough such that it
can react to changes in thememory behavior of an application
in a timely manner is challenging [86, 107, 122, 128, 135].

A wide body of research (e.g., [1, 2, 4, 7–11, 14–17, 20, 21,
26, 30, 39–42, 45, 47, 51, 52, 59–61, 68, 70, 71, 76, 77, 86, 87, 95,
97–99, 101, 102, 104, 105, 110–112, 121–123, 127, 133, 139]) pro-
poses mechanisms to alleviate the overheads of conventional
memory allocation and address translation by exploiting spe-
cific trends observed in modern systems (e.g., the behavior of
emerging applications). Despite notable improvements, these
solutions have two major shortcomings. First, these solutions
mainly exploit specific system or workload characteristics
and, thus, are applicable to a limited set of problems or appli-
cations. Second, each solution requires specialized and not
necessarily compatible changes to both the OS and hardware.
Therefore, implementing all of these proposals at the same
time in a system is a daunting prospect.

Our goal in this work is to design a general-purpose alter-
native virtual memory framework that naturally supports and
better extracts performance from a wide variety of new system
configurations, while still providing the key features of conven-
tional virtual memory frameworks. To this end, we propose
the Virtual Block Interface (VBI), an alternative approach to
memory virtualization that is inspired by the logical block
abstraction used by solid-state drives to hide the underlying
device details from the rest of the system. In a similar way,
we envision the memory controller as the primary provider
of an abstract interface that hides the details of the under-
lying physical memory architecture, including the physical
addresses of the memory locations.

VBI is based on three guiding principles. First, programs
should be allowed to choose the size of their virtual address
space, to mitigate translation overheads associated with very
large virtual address spaces. Second, address translation
should be decoupled from memory protection, since they are
logically separate and need not be managed at the same gran-
ularity by the same structures. Third, software should be
allowed to communicate semantic information about applica-
tion data to the hardware, so that the hardware can more
intelligently manage the underlying hardware resources.

VBI introduces a globally-visible address space called the
VBI Address Space, that consists of a large set of virtual blocks
(VBs) of different sizes. For any semantically meaningful unit
of information (e.g., a data structure, a shared library), the
program can choose a VB of appropriate size, and tag the VB
with properties that describe the contents of the VB. The key
idea of VBI is to delegate physical memory allocation and
address translation to a hardware-based Memory Translation
Layer (MTL) at the memory controller. This idea is enabled
by the fact that the globally-visible VBI address space pro-
vides VBI with system-wide unique VBI addresses that can
be directly used by on-chip caches without requiring address
translation. In VBI, the OS no longer needs to manage address
translation and memory allocation for the physical memory
devices. Instead, the OS (1) retains full control over access pro-
tection by controlling which programs have access to which
virtual blocks, and (2) uses VB properties to communicate the
data’s memory requirements (e.g., latency sensitivity) and
characteristics (e.g., access pattern) to the memory controller.

Figure 1 illustrates the differences between virtual memory
management in state-of-the-art production Intel x86-64 sys-
tems [54] and in VBI. In x86-64 (Figure 1a), the OS manages
a single private virtual address space (VAS) for each process
(1), providing each process with a fixed-size 256 TB VAS
irrespective of the actual memory requirements of the pro-
cess (2). The OS uses a set of page tables, one per process,
to define how each VAS maps to physical memory (3). In
contrast, VBI (Figure 1b) makes all virtual blocks (VBs) visi-
ble to all processes, and the OS controls which processes can
access which VBs (1). Therefore, a process’ total virtual ad-
dress space is defined by which VBs are attached to it, i.e., by
the process’ actual memory needs (2). In VBI, the MTL has
full control over mapping of data from each VB to physical
memory, invisibly to the system software (3).

fixed-size (256 TB)
Virtual Address Spaces (VAS)

one-to-one
mapping (OS)

P1

VAS 1

P2

VAS 2

Pn

VAS n

Page Tables
virtual-to-physical translation

managed by the OS

Physical Memory

���������

1

2

3

�����������Processes

(a) Intel x86-64

variable-size (4 KB – 128 TB)
Virtual Blocks (VB)

many-to-many
mapping (OS)

P1

VB 1

P2 Pn

Memory Translation Layer
VBI-to-physical translation

managed in hardware

Physical Memory

VB 2 VB 3 VB 4

1

2

3

�����������Processes

(b) Virtual Block Interface

Figure 1: Virtual memorymanagement in x86-64 and in VBI.

VBI seamlessly and efficiently supports important opti-
mizations that improve overall system performance, includ-
ing: (1) enabling benefits akin to using virtually-indexed
virtually-tagged (VIVT) caches (e.g., reduced address transla-
tion overhead), (2) eliminating two-dimensional page table
walks in virtual machine environments, (3) delaying phys-
ical memory allocation until the first dirty last-level cache
line eviction, and (4) flexibly supporting different virtual-to-
physical address translation structures for different memory
regions. §3.5 describes these optimizations in detail.

We evaluate VBI for two important and emerging use-cases.
First, we demonstrate that VBI significantly reduces the ad-
dress translation overhead both for natively-running programs
and for programs running inside a virtual machine (VM pro-
grams). Quantitative evaluations using workloads from SPEC
CPU 2006 [125], SPEC CPU 2017 [126], TailBench [48], and
Graph 500 [44] show that a simplified version of VBI that
maps VBs using 4 KB granularity only improves the perfor-
mance of native programs by 2.18× and VM programs by
3.8×. Even when enabling support for large pages for all data,
which significantly lowers translation overheads, VBI im-
proves performance by 77% for native programs and 89% for
VM programs. Second, we demonstrate that VBI significantly
improves the performance of heterogeneous memory archi-
tectures by evaluating two heterogeneous memory systems
(PCM–DRAM [107] and Tiered-Latency-DRAM [74]). We
show that VBI, by intelligently mapping frequently-accessed
data to the low-latency region of memory, improves overall
performance of these two systems by 33% and 21% respec-
tively, compared to systems that employ a heterogeneity-
unaware data mapping scheme. §7 describes our methodol-
ogy, results, and insights from these evaluations.

1051

We make the following key contributions:
• To our knowledge, this is the first work to propose a virtual
memory framework that relieves the OS of explicit phys-
ical memory management and delegates this duty to the
hardware, i.e., the memory controller.

• We propose VBI, a new virtual memory framework that
efficiently enables memory-controller-based memory man-
agement by exposing a purely virtual memory interface to
applications, the OS, and the hardware caches. VBI natu-
rally and seamlessly supports several optimizations (e.g.,
low-cost page walks in virtual machines, purely virtual
caches, delayed physical memory allocation), and integrates
well with a wide range of system designs.

• We provide a detailed reference implementation of VBI,
including required changes to the user applications, system
software, ISA, and hardware.

• We quantitatively evaluate VBI using two concrete use
cases: (1) address translation improvements for native exe-
cution and virtual machines, and (2) two different hetero-
geneous memory architectures. Our evaluations show that
VBI significantly improves performance in both use cases.

2. Design Principles

To minimize performance and complexity overheads of
memory virtualization, our virtual memory framework is
grounded on three key design principles.

Appropriately-Sized Virtual Address Spaces. The vir-
tual memory framework should allow each application to
have control over the size of its virtual address space. The
majority of applications far underutilize the large virtual ad-
dress space offered by modern architectures (e.g., 256 TB
in Intel x86-64). Even demanding applications such as
databases [27, 35, 89, 91, 93, 114] and caching servers [37, 92]
are cognizant of the amount of available physical memory
and of the size of virtual memory they need. Unfortunately,
a larger virtual address space results in larger or deeper page
tables (i.e., page tables with more levels). A larger page table
increases TLB contention, while a deeper page table requires
a greater number of page table accesses to retrieve the phys-
ical address for each TLB miss. In both cases, the address
translation overhead increases. Therefore, allowing applica-
tions to choose an appropriately-sized virtual address space
based on their actual needs, avoids the higher translation
overheads associated with a larger address space.

Decoupling Address Translation from Access Protec-
tion. The virtual memory framework should decouple ad-
dress translation from access protection checks, as the two have
inherently different characteristics. While address transla-
tion is typically performed at page granularity, protection
information is typically the same for an entire data structure,
which can span multiple pages. Moreover, protection infor-
mation is purely a function of the virtual address, and does
not require address translation. However, existing systems
store both translation and protection information for each
virtual page as part of the page table. Decoupling address
translation from protection checking can enable opportuni-
ties to remove address translation from the critical path of
an access protection check, deferring the translation until
physical memory must be accessed, thereby lowering the
performance overheads of virtual memory.

Better Partitioning of Duties Between Software and
Hardware. The virtual memory framework should allow
software to easily communicate semantic information about

application data to hardware and allow hardware to manage
the physical memory resources. Different pieces of program
data have different performance characteristics (latency, band-
width, and parallelism), and have other inherent properties
(e.g., compressibility, persistence) at the software level. As
highlighted by recent work [129,131], while software is aware
of this semantic information, the hardware is privy to fine-
grained dynamic runtime information (e.g., memory access
behavior, phase changes, memory bandwidth availability)
that can enable vastly more intelligent management of the
underlying hardware resources (e.g., better data mapping, mi-
gration, and scheduling decisions). Therefore, conveying se-
mantic information to the hardware (i.e., memory controller)
that manages the physical memory resources can enable a
host of new optimization opportunities.

3. Virtual Block Interface: Overview

Figure 2 shows an overview of VBI. There are three major
aspects of the VBI design: (1) the VBI address space, (2) VBI
access permissions, and (3) the Memory Translation Layer.
We first describe these aspects in detail (§3.1–§3.3). Next,
we explain the implementation of key OS functionalities in
VBI (§3.4). Finally, we discuss some of the key optimizations
that VBI enables (§3.5).

Memory Translation Layer
manages physical memory allocation and VBI-to-physical address mapping

Physical Memory

VB 1
128KB

code

kernel

VB 2
128KB

data

kernel

VB 3
128KB

Lat-Sen

data

user

VB 4
128KB

shared
library

user

VB 5
128KB

code

user

VB 6
4GB

Band-Sen

data

user
VBI Address Space

Host Operating System Program 2 (native)

Virtualization Layer

Guest Operating System Program 1 (virtual)

VB 1
128KB

code

kernel

VB 2
128KB

data

kernel

VB 3
128KB

Lat-Sen

data

user

VB 4
128KB

shared
library

user

VB 5
128KB

code

user

VB 6
4GB

Band-Sen

data

user
VBI Address Space

X X RW RW X X X R Access
Permissions

Figure 2: Overview of VBI. Lat-Sen and Band-Sen represent
latency-sensitive and bandwidth-sensitive, respectively.

3.1. VBI Address Space

Unlike most existing architectures wherein each process
has its own virtual address space, virtual memory in VBI is a
single, globally-visible address space called the VBI Address
Space. As shown in Figure 2, the VBI Address Space consists
of a finite set of Virtual Blocks (VBs). Each VB is a contiguous
region of VBI address space that does not overlap with any
other VB. Each VB contains a semantically meaningful unit
of information (e.g., a data structure, a shared library) and is
associated with (1) a system-wide unique ID, (2) a specific size
(chosen from a set of pre-determined size classes), and (3) a
set of properties that specify the semantics of the content of
the VB and its desired characteristics. For example, in the
figure, VB 1 indicates the VB with ID 1; its size is 128 KB, and
it contains code that is accessible only to the kernel. On the
other hand, VB 6 is the VB with ID 6; its size is 4 GB, and
it contains data that is bandwidth-sensitive. In contrast to
conventional systems, where the mapping from the process’
virtual-to-physical address space is stored in a per-process
page table [54], VBI maintains the VBI-to-physical address

1052

mapping information of each VB in a separate translation
structure. This approach enables VBI to flexibly tune the type
of translation structure for each VB to the characteristics of
the VB (as described in §5.2). VBI stores the above information
and a pointer to the translation structure of each VB in a set
of VB Info Tables (VITs; described in §4.5.1).

3.2. VBI Access Permissions

As the VBI Address Space is global, all VBs in the system are
visible to all processes. However, a program can access data
within a VB only if it is attached to the VB with appropriate
permissions. In Figure 2, Program 2 can only execute from VB
4 or VB 5, only read from VB 6, and cannot access VB 3 at all;
Program 1 and Program 2 both share VB 4. For each process,
VBI maintains information about the set of VBs attached to
the process in an OS-managed per-process table called the
Client–VB Table (CVT) (described in §4.1.2). VBI provides the
OS with a set of instructions with which the OS can control
which processes have what type of access permissions to
which VBs. On each memory access, the processor checks the
CVT to ensure that the program has the necessary permission
to perform the access. With this approach, VBI decouples
protection checks from address translation, which allows it to
defer the address translation to the memory controller where
the physical address is required to access main memory.

3.3. Memory Translation Layer

In VBI, to access a piece of data, a programmust specify the
ID of the VB that contains the data and the offset of the data
within the VB. Since the ID of the VB is unique system-wide,
the combination of the ID and offset points to the address
of a specific byte of data in the VBI address space. We call
this address the VBI address. As the VBI address space is
globally visible, similar to the physical address in existing
architectures, the VBI address points to a unique piece of
data in the system. As a result, VBI uses the VBI address
directly (i.e., without requiring address translation) to locate
data within the on-chip caches without worrying about the
complexity of homonyms and synonyms [18, 19, 56], which
cannot exist in VBI (see §3.5). Address translation is required
only when an access misses in all levels of on-chip caches.
To perform address translation, VBI uses the Memory

Translation Layer (MTL). The MTL, implemented in the mem-
ory controller with an interface to the system software, man-
ages both allocation of physical memory to VBs and VBI-to-
physical address translation (relieving the OS of these duties).
Memory-controller-based memory management enables a
number of performance optimizations (e.g., avoiding 2D page
walks in virtual machines, flexible address translation struc-
tures), which we describe in §3.5.

3.4. Implementing Key OS Functionalities

VBI allows the system to efficiently implement existing OS
functionalities. In this section, we describe five key function-
alities and how VBI enables them.

Physical Memory Capacity Management. In VBI, the
MTL allocates physical memory for VBs as andwhen required.
To handle situations when the MTL runs out of physical
memory, VBI provides two system calls that allow the MTL
to move data from physical memory to the backing store and
vice versa. The MTL maintains information about swapped-
out data as part of the VB’s translation structures.

Data Protection. The goal of data protection is to prevent
a malicious program from accessing kernel data or private
data of other programs. In VBI, the OS ensures such protec-
tion by appropriately setting the permissions with which each
process can access different VBs. Before each memory access,
the CPU checks if the executing thread has appropriate access
permissions to the corresponding VB (§4.2.3).

Inter-Process Data Sharing (True Sharing). When two
processes share data (e.g., via pipes), both processes have a
coherent view of the shared memory, i.e., modifications made
by one process should be visible to the other process. In VBI,
the OS supports such true sharing by granting both processes
permission to access the VB containing the shared data.

Data Deduplication (Copy-on-Write Sharing). In most
modern systems, the OS reduces redundancy in physical mem-
ory by mapping virtual pages containing the same data to the
same physical page. On a write to one of the virtual pages,
the OS copies the data to a new physical page, and remaps the
written virtual page to the new physical page before perform-
ing the write. In VBI, the MTL performs data deduplication
when a VB is cloned by sharing both translation structures
and data pages between the two VBs (§4.4), and using the
copy-on-write mechanism to ensure consistency.

Memory-Mapped Files. To support memory-mapped
files, existing systems map a region of the virtual address
space to a file in storage, and loads/stores to that region are
used to access/update the file content. VBI naturally supports
memory-mapped files as the OS simply associates the file to
a VB of appropriate size. An offset within the VB maps to the
same offset within the file. The MTL uses the same system
calls used to manage physical memory capacity (described
under Physical Memory Capacity Management above) to move
data between the VB in memory and the file in storage.

3.5. Optimizations Supported by VBI

In this section, we describe four key optimizations that the
VBI design enables.

Virtually-Indexed Virtually-Tagged Caches. Using
fully-virtual (i.e., VIVT) caches enables the system to delay
address translation and reduce accesses to translation
structures such as the TLBs. However, most modern
architectures do not support VIVT caches due to two main
reasons. First, handling homonyms (i.e., where the same
virtual address maps to multiple physical addresses) and
synonyms (i.e., where multiple virtual addresses map to
the same physical address) introduces complexity to the
system [18, 19, 56]. Second, although address translation is
not required to access VIVT caches, the access permission
check required prior to the cache access still necessitates
accessing the TLB and can induce a page table walk on a
TLB miss. This is due to the fact that the protection bits are
stored as part of the page table entry for each page in current
systems. VBI avoids both of these problems.
First, VBI addresses are unique system-wide, eliminating

the possibility of homonyms. Furthermore, since VBs do not
overlap, each VBI address appears in at most one VB, avoiding
the possibility of synonyms. In case of true sharing (§3.4),
different processes are attached to the same VB. Therefore,
the VBI address that each process uses to access the shared
region refers to the same VB. In case of copy-on-write sharing,
where the MTL may map two VBI addresses to the same
physical memory for deduplication, the MTL creates a new
copy of the data before any write to either address. Thus,

1053

neither form of sharing can lead to synonyms. As a result, by
using VBI addresses directly to access on-chip caches, VBI
achieves benefits akin to VIVT caches without the complexity
of dealing with synonyms and homonyms. Additionally, since
the VBI address acts as a system-wide single point of reference
for the data that it refers to, all coherence-related requests
can use VBI addresses without introducing any ambiguity.
Second, VBI decouples protection checks from address

translation, by storing protection and address translation in-
formation in separate sets of tables and delegating access
permission management to the OS, avoiding the need to ac-
cess translation structures for protection purposes (as done
in existing systems).

Avoiding 2D Page Walks in Virtual Machines. In VBI,
once a process inside a VM attaches itself to a VB (with the
help of the host and guest OSes), any memory access from
the VM directly uses a VBI address. As described in §3.3, this
address is directly used to address the on-chip caches. In
case of an LLC miss, the MTL translates the VBI address to
physical address. As a result, unlike existing systems, address
translation for a VM under VBI is no different from that for a
host, enabling significant performance improvements. We ex-
pect these benefits to further increase in systems supporting
nested virtualization [36, 43]. §6.1 discusses the implementa-
tion of VBI in virtualized environments.

Delayed Physical Memory Allocation. As VBI uses VBI
addresses to access all on-chip caches, it is no longer neces-
sary for a cache line to be backed by physical memory before
it can be accessed. This enables the opportunity to delay
physical memory allocation for a VB (or a region of a VB) un-
til a dirty cache line from the VB is evicted from the last-level
cache. Delayed allocation has three benefits. First, the alloca-
tion process is removed from the critical path of execution, as
cache line evictions are not on the critical path. Second, for
VBs that never leave the cache during the lifetime of the VB
(likely more common with growing cache sizes in modern
hardware), VBI avoids physical memory allocation altogether.
Third, when using delayed physical memory allocation, for
an access to a region with no physical memory allocated yet,
VBI simply returns a zero cache line, thereby avoiding both
address translation and a main memory access, which im-
proves performance. §5.1 describes the implementation of
delayed physical memory allocation in VBI.

Flexible Address Translation Structures. A recent
work [4] shows that different data structures benefit from
different types of address translation structures depending
on their data layout and access patterns. However, since in
conventional virtual memory, the hardware needs to read
the OS-managed page tables to perform page table walks,
the structure of the page table needs to be understood by
both the hardware and OS, thereby limiting the flexibility
of the page table structure. In contrast, in VBI, the MTL is
the only component that manages and accesses translation
structures. Therefore, the constraint of sharing address trans-
lation structures with the OS is relaxed, providing VBI with
more flexibility in employing different types of translation
structures in the MTL. Accordingly, VBI maintains a separate
translation structure for each VB, and can tune it to suit the
properties of the VB (e.g., multi-level tables for large VBs or
those with many sparsely-allocated regions, and single-level
tables for small VBs or those with many large contiguously-
allocated regions). This optimization reduces the number of
memory accesses necessary to serve a TLB miss.

4. VBI: Detailed Design
In this section, we present the detailed design and a ref-

erence implementation of the Virtual Block Interface. We
describe (1) the components architecturally exposed by VBI
to the rest of the system (§4.1), (2) the life-cycle of allocated
memory (§4.2), (3) the interactions between the processor,
OS, and the process in VBI (§4.4), and (4) the operation of the
Memory Translation Layer in detail (§4.5).

4.1. Architectural Components
VBI exposes two architectural components to the rest of

the system that form the contract between hardware and
software: (1) virtual blocks, and (2) memory clients.

4.1.1. Virtual Blocks (VBs). The VBI address space in VBI is
characterized by three parameters: (1) the size of the address
space, which is determined by the bit width of the processor’s
address bus (64 in our implementation); (2) the number of
VB size classes (8 in our implementation); and (3) the list
of size classes (4 KB, 128 KB, 4 MB, 128 MB, 4 GB, 128 GB,
4 TB, and 128 TB). Each size class in VBI is associated with
an ID (SizeID), and each VB is assigned an ID within its size
class (VBID). Every VB is identified system-wide by its VBI
unique ID (VBUID), which is the concatenation of SizeID and
VBID. As shown in Figure 3, VBI constructs a VBI address
using two components: (1) VBUID, and (2) the offset of the
addressed data within the VB. In our implementation, SizeID
uses three bits to represent each of our eight possible size
classes. The remaining address bits are split between VBID
and the offset. The precise number of bits required for the
offset is determined by the size of the VB, and the remaining
bits are used for VBID. For example, the 4 KB size class in our
implementation uses 12 bits for the offset, leaving 49 bits for
VBID, i.e., 249 VBs of size 4 KB. In contrast, the 128 TB size
class uses 47 bits for the offset, leaving 14 bits for VBID, i.e.,
214 VBs of size 128 TB.

VBUID
SizeID VBID

offset

Figure 3: Components of a VBI address.

As §3 describes, VBI associates each VB with a set of
flags that characterize the contents of the VB (e.g, code,
read-only, kernel, compressible, persistent). In addi-
tion to these flags, software may also provide hints to describe
the memory behavior of the data that the VB contains (e.g., la-
tency sensitivity, bandwidth sensitivity, compressibility, error
tolerance). Prior work extensively studies a set of useful prop-
erties [83, 129, 131, 136]. Software specifies these properties
via a bitvector that is defined as part of the ISA specification.
VBI maintains the flags and the software-provided hints as a
property bitvector.
For each VB in the system, VBI stores (1) an enable bit to

describe whether the VB is currently assigned to any pro-
cess, (2) the property bitvector, (3) the number of processes
attached to the VB (i.e., a reference count), (4) the type of VBI-
to-physical address translation structure being used for the
VB, and (5) a pointer to the VB’s address translation structure.
All of this information is stored as an entry in the VB Info
Tables (§4.5.1).

4.1.2. Memory Clients. Similar to address space identi-
fiers [3] in existing architectures, VBI introduces the notion
of memory client to communicate the concept of a process in
VBI. A memory client refers to any entity that needs to allo-
cate and use memory, such as the OS itself, and any process

1054

running on the system (natively or inside a virtual machine).
In order to track the permissions with which a client can
access different VBs, each client in VBI is assigned a unique
ID to identify the client system-wide. During execution, VBI
tags each core with the client ID of the process currently
running on it.
As §3 discusses, the set of VBs that a client can access

and their associated permissions are stored in a per-client
table called the Client–VB Table (CVT). Each entry in the CVT
contains (1) a valid bit, (2) VBUID of the VB, and (3) a three-bit
field representing the read-write-execute permissions (RWX)
with which the client can access that VB. For each memory
access, the processor checks the CVT to ensure that the client
has appropriate access to the VB. The OS implicitly manages
the CVTs using the following two new instructions:

attach CID, VBUID, RWX detach CID, VBUID

The attach instruction adds an entry for VB VBUID in
the CVT of client CID with the specified RWX permissions
(either by replacing an invalid entry in the CVT, or being
inserted at the end of the CVT). This instruction returns
the index of the CVT entry to the OS and increments the
reference count of the VB (stored in the VIT entry of the VB;
see §4.5.1). The detach instruction resets the valid bit of the
entry corresponding to VB VBUID in the CVT of client CID
and decrements the reference count of the VB.

The processor maintains the location and size of the CVT
for each client in a reserved region of physical memory. As
clients are visible to both the hardware and the software, the
number of clients is an architectural parameter determined
at design time and exposed to the OS. In our implementation,
we use 16-bit client IDs (supporting 216 clients).

4.2. Life Cycle of Allocated Memory

In this section, we describe the phases in the life cycle of
dynamically-allocated memory: memory allocation, address
specification, data access, and deallocation. Figure 4 shows
this flow in detail, including the hardware components that
aid VBI in efficiently executing memory operations. In §4.4,
we discuss how VBI manages code, shared libraries, static
data, and the life cycle of an entire process.

When a program needs to allocate memory for a new data
structure, it first requests a new VB from the OS. For this
purpose, we introduce a new system call, request_vb. The
program invokes request_vb with two parameters: (1) the
expected size of the data structure, and (2) a bitvector of the
desired properties for the data structure (1a in Figure 4).

In response, the OS first scans the VB Info Table to identify
the smallest free VB that can accommodate the data struc-
ture. The OS then uses the enable_vb instruction (1b) to
inform the MTL that the VB is now enabled. The enable_vb
instruction takes the VBUID of the VB to be enabled along
with the properties bitvector as arguments. Upon executing
this instruction, the MTL updates the entry for the VB in
the VB Info Table to reflect that it is now enabled with the
appropriate properties (1c).

enable_vb VBUID, props

4.2.1. Dynamic Memory Allocation. After enabling the

VB, the OS uses the attach instruction (2a) to add the VB
to the CVT of the calling process and increment the VB’s
reference count in its VIT entry (2b ; §4.1.2). The OS then

returns the index of the newly-added CVT entry as the return
value of the request_vb system call (stored as index in the
application code example of Figure 4). This index serves as a
pointer to the VB. As we discuss in §4.2.2, the program uses
this index to specify virtual addresses to the processor.
After the VB is attached to the process, the process can

access any location within the VB with the appropriate per-
missions. It can also dynamically manage memory inside the
VB using modified versions of malloc and free that take
the CVT entry index as an additional argument (3). During
execution, it is possible that the process runs out of memory
within a VB (e.g., due to an incorrect estimate of the expected
size of the data structure). In such a case, VBI allows auto-
matic promotion of the allocated data to a VB of a larger size
class. §4.4 discusses VB promotion in detail.

4.2.2. Address Specification. In order to access data inside
a VB, the process generates a two-part virtual address in the
format of {CVT index, offset}. The CVT index specifies
the CVT entry that points to the corresponding VB, and the
offset is the location of the data inside the VB. Accessing the
data indirectly through the CVT index as opposed to direcly
using the VBI address allows VBI to not require relocatable
code and maintain the validity of the pointers (i.e., virtual
addresses) within a VB when migrating/copying the content
of a VB to another VB. With CVT indirection, VBI can seam-
lessly migrate/copy VBs by just updating the VBUID of the
corresponding CVT entry with the VBUID of the new VB.

4.2.3. Operation of a Memory Load. Figure 4 shows the
execution of the memory load instruction triggered by the
code y = (*x), where the pointer x contains the virtual ad-
dress consisting of (1) the index of the corresponding VB
in the process’ CVT, and (2) the offset within the VB (4 in
Figure 4). When performing a load operation, the CPU first
checks whether index is within the range of the client’s CVT.
Next, the CPU needs to fetch the corresponding CVT entry
in order to perform the permissions check. The CPU uses
a per-process small direct-mapped CVT cache to speed up
accesses to the client’s recently-accessed CVT entries (§4.3).
Therefore, the CPU looks up the corresponding CVT cache
entry using index as the key (5), and checks if (1) the client
has permission to read from the VB, and (2) offset is smaller
than the size of the VB. If either of these checks fail, the CPU
raises an exception. If the access is allowed, the CPU con-
structs the VBI address by concatenating the VBUID stored in
the CVT entry with offset (6). The processor directly uses
the generated VBI address to access the on-chip caches. If the
data is present in any of the on-chip caches, it is returned to
the CPU, thereby completing the load operation.

VBI performs address translation in parallel with the cache
lookup in order to minimize the address translation overhead
on the critical path of the access. Accordingly, when an access
misses in the L2 cache, the processor requests the MTL to
perform the VBI-to-physical address translation. To this end,
MTL fetches the pointer to the VB’s translation structure from
the VBI Info Table (VIT) entry associated with the VB. VBI
uses a VIT cache to speed up accesses to recently-accessed
VIT entries (7). In order to facilitate the VBI-to-physical
address translation, MTL employs a translation lookaside
buffer (TLB). On a TLB hit, the memory controller accesses
the cache line using the physical address in the corresponding
TLB entry (8). On a TLBmiss, the MTL performs the address
translation by traversing the VB’s translation structure (9),
and inserts the mapping information into the TLB once the

1055

Memory Controller

Memory Translation Layer (MTL)

L1
miss

VBUID offset

L2

Last-Level
Cache
(LLC)

index = request_vb(...);
x = malloc(index, size);

.

.

.

y = (*x); Virtual
Address

Application

index offset

miss

VBI
Address

CPU Physical Memory

VITs

CVTs

1a enable_vb1b attach2a
1c

3

4

6

5

CVT
(Client–VB Table)

Cache

7
Translation
Structures

Data

Translation
Walker

Physical Address

9

8

TLB

miss

hit

2bVIT
(VB Info Table)

Cache

Figure 4: Reference microarchitectural implementation of the Virtual Block Interface.

physical address is obtained. Next, the memory controller
fetches the corresponding cache line from main memory and
returns it to the processor. The processor inserts the cache
line into the on-chip caches using the VBI address, and returns
the cache line to the CPU to complete the load. §4.5 describes
the operation of the MTL in detail.

4.2.4. Memory Deallocation. The program can deallocate
the memory allocated inside a VB using free (§4.2.1). When
a process terminates, the OS traverses the CVT of the process
and detaches all of the VBs attached to the process using
the detach instruction. For each VB whose reference count
(stored as part of VIT entry of the VB; see §4.5.1) drops to
zero, the OS informs VBI that the VB is no longer in use via
the disable_vb instruction.

disable_vb VBUID

In response to the disable_vb instruction, the MTL de-
stroys all state associated with VB VBUID. To avoid stale data
in the cache, all of the VB’s cache lines are invalidated before
the VBUID is reused for another memory allocation. Because
there are a large number of VBs in each size class, it is likely
that the disabled VBUID does not need to be reused immedi-
ately, and the cache cleanup can be performed lazily in the
background.

4.3. CVT Cache
For every memory operation, the CPU must check if the

operation is permitted by accessing the information in the
corresponding CVT entry. To exploit locality in the CVT, VBI
uses a per-core CVT cache to store recently-accessed entries
in the client’s CVT. The CVT cache is similar to the TLB
in existing processors. However, unlike a TLB that caches
virtual-to-physical address mappings of page-sized memory
regions, the CVT cache maintains information at the VB
granularity, and only for VBs that can be accessed by the
program. While programs may typically access hundreds or
thousands of pages, our evaluations show that most programs
only need a few tens of VBs to subsume all their data. With
the exception of GemsFDTD (which allocates 195 VBs),1 all
applications use fewer than 48 VBs. Therefore, the processor
can achieve a near-100% hit rate even with a 64-entry direct-
mapped CVT cache, which is faster andmore efficient than the
large set-associative TLBs employed by modern processors.

4.4. Processor, OS, and Process Interactions
VBI handles basic process lifetime operations similar to

current systems. This section describes in detail how these
operations work with VBI.

1GemsFDTD performs computations in the time domain on 3D grids. It
involves multiple execution timesteps, each of which allocates new 3D grids
to store the computation output. Multiple allocations are also needed during
the post-processing Fourier transformation performed in GemsFDTD.

System Booting. When the system is booted, the proces-
sor initializes the data structures relevant to VBI (e.g., pointers
to VIT tables) with the help of the MTL (discussed in §4.5).
An initial ROM program runs as a privileged client, copies
the bootloader code from bootable storage to a newly enabled
VB, and jumps to the bootloader’s entry point. This process
initiates the usual sequence of chain loading until the OS is
finally loaded into a VB. The OS reads the parameters of VBI,
namely, the number of bits of virtual address, the number and
sizes of the virtual block size classes, and the maximum num-
ber of memory clients supported by the system, to initialize
the OS-level memory management subsystem.

Process Creation. When a binary is executed, the OS cre-
ates a new process by associating it with one of the available
client IDs. For each section of the binary (e.g., code, static
data), the OS (1) enables the smallest VB that can fit the con-
tents of the section and associates the VBwith the appropriate
properties using the enable_vb instruction, (2) attaches itself
to the VB with write permissions using the attach instruc-
tion, (3) copies the contents from the application binary into
the VB, and (4) detaches itself from the VB using the detach
instruction. The OS then attaches the client to the newly
enabled VBs and jumps to program’s entry point.

Shared Libraries. The OS loads the executable code of
each shared library into a separate VB. While a shared library
can dynamically allocate data using the request_vb system
call, any static per-process data associated with the library
should be loaded into a separate VB for each process that uses
the library. In existing systems, access to static data is typi-
cally performed using PC-relative addressing. VBI provides
an analogous memory addressing mode that we call CVT-
relative addressing. In this addressing mode, the CVT index
of a memory reference is specified relative to the CVT index
of the VB containing the reference. Specifically, in shared
libraries, all references to static data use +1 CVT-relative ad-
dressing, i.e., the CVT index of the data is one more than the
CVT index of the code. After process creation, the OS iter-
ates over the list of shared libraries requested by the process.
For each shared library, the OS attaches the client to the VB
containing the corresponding library code and ensures that
the subsequent CVT entry is allocated to the VB containing
the static data associated with the shared library. This so-
lution avoids the need to perform load-time relocation for
each data reference in the executable code, although VBI can
use relocations in the same manner as current systems, if
required.

Process Destruction. When a process terminates, the OS
deallocates all VBs for the process using the mechanism de-
scribed in §4.2.4, and then frees the client ID for reuse.

Process Forking. When a process forks, all of its memory
state must be replicated for the newly created process. In VBI,

1056

forking entails creating copies of all the private VBs attached
to a process. To reduce the overhead of this operation, VBI
introduces the following instruction:

clone_vb SVBUID, DVBUID

clone_vb instructs VBI to make the destination VB DVBUID
a clone of the source VB SVBUID. To efficiently implement
clone_vb, the MTL marks all translation structures and phys-
ical pages of the VB as copy-on-write, and lazily copies the
relevant regions if they receive a write operation.2

When forking a process, the OS first copies all CVT entries
of the parent to the CVT of the child so that the child VBs have
the same CVT index as the parent VBs. This maintains the
validity of the pointers in the child VBs after cloning. Next,
for each CVT entry corresponding to a private VB (shared
VBs are already enabled), the OS (1) enables a new VB of
the same size class and executes the clone_vb instruction,
and (2) updates the VBUID in the CVT entry to point to the
newly enabled clone. The fork returns after all the clone_vb
operations are completed.

VB Promotion. As described in §4.2.1, when a program
runs out of memory for a data structure within the assigned
VB, the OS can automatically promote the data structure to a
VB of higher size class. To perform such a promotion, the OS
first suspends the program. It enables a new VB of the higher
size class, and executes the promote_vb instruction.

promote_vb SVBUID, LVBUID

In response to this instruction, VBI first flushes all dirty
cache lines from the smaller VB with the unique ID of SVBUID.
This operation can be sped up using structures like the Dirty
Block Index [116]. VBI then copies all the translation informa-
tion from the smaller VB appropriately to the larger VB with
the unique ID of LVBUID. After this operation, in effect, the
early portion of the larger VB is mapped to the same region
in the physical memory as the smaller VB. The remaining
portions of the larger VB are unallocated and can be used
by the program to expand its data structures and allocate
more memory using malloc. VBI updates the entry in the
program’s CVT that points to SVBUID to now point to LVBUID.

4.5. Memory Translation Layer
The Memory Translation Layer (MTL) centers around the

VB Info Tables (VITs), which store the metadata associated
with each VB. In this section, we discuss (1) the design of
the VITs, (2) the two main responsibilities of the MTL; mem-
ory allocation and address translation, and (3) the hardware
complexity of the MTL.

4.5.1. VB Info Table (VIT). As §4.1.1 briefly describes, MTL
uses a set of VB Info Tables (VITs) to maintain information
about VBs. Specifically, for each VB in the system, a VB Info
Table stores an entry that consists of (1) an enable bit, which
indicates if the VB is currently assigned to a process; (2) props,
a bitvector that describes the VB properties; (3) the number of
processes attached to the VB (i.e., a reference count); (4) the
type of VBI-to-physical address translation structure being
used for the VB; and (5) a pointer to the translation structure.
For ease of access, the MTL maintains a separate VIT for each
size class. The ID of a VB within its size class (VBID) is used
as an index into the corresponding VIT. When a VB is enabled

2The actual physical copy can be accelerated using in-DRAM copy
mechanisms such as RowClone [117], LISA [22], and NoM [119].

(using enable_vb), the MTL finds the corresponding VIT and
entry using the SizeID and VBID, respectively (both extracted
from VBUID). MTL then sets the enabled bit of the entry and
updates props. The reference counter of the VB is also set to
0, indicating that no process is attached to this VB. The type
and pointer of the translation structure of the VB are updated
in its VIT entry at the time of physical memory allocation
(as we discuss in §5.2). Since a VIT contains entries for the
VBs of only a single size class, the number of entries in each
VIT equals the number of VBs that the associated size class
supports (§4.1.1). However, VBI limits the size of each VB
Info Table by storing entries only up to the currently-enabled
VB with the largest VBID in the size class associated with that
VB Info Table. The OS ensures that the table does not become
prohibitively large by reusing previously-disabled VBs for
subsequent requests (§4.2.4).

4.5.2. Base Memory Allocation and Address Transla-
tion. Our base memory allocation algorithm allocates physi-
cal memory at 4 KB granularity. Similar to x86-64 [54], Our
base address translation mechanism stores VBI-to-physical
address translation information in multi-level tables. How-
ever, unlike the 4-level page tables in x86-64, VBI uses tables
with varying number of levels according to the size of the
VB. For example, a 4 KB VB does not require a translation
structure (i.e., can be direct-mapped) since 4 KB is the mini-
mum granularity of meomry allocation. On the other hand, a
128 KB VB requires a one-level table for translating address to
4 KB regions. As a result, smaller VBs require fewer memory
accesses to serve a TLB miss. For each VB, the VIT stores a
pointer to the address of the root of the multi-level table (or
the base physical address of the directly mapped VBs).

4.5.3. MTL Hardware Complexity.We envision the MTL
as software running on a programmable low-power core
within the memory controller. While conventional OSes are
responsible for memory allocation, virtual-to-physical map-
ping, and memory protection, the MTL does not need to deal
with protection, so we expect theMTL code to be simpler than
typical OS memory management software. As a result, the
complexity of theMTL hardware is similar to that of prior pro-
posals such as Pinnacle [6] (commercially available) and Page
Overlays [118], which performmemory allocation and remap-
ping in the memory controller. While both Pinnacle and Page
Overlays are hardware solutions, VBI provides flexibility by
making the MTL programmable, thereby allowing software
updates for different memory management policies (e.g., ad-
dress translation, mapping, migration, scheduling). Our goal
in this work is to understand the potential of hardware-based
memory allocation and address translation.

5. Allocation and Translation Optimizations
The MTL employs three techniques to optimize the base

memory allocation and address translation described in §4.5.2.
We explain these techniques in the following subsections.

5.1. Delayed Physical Memory Allocation
As described in §3.5, VBI delays physical memory alloca-

tion for a VB (or a region of a VB) until a dirty cache line from
that VB (or a region of the VB) is evicted from the last-level
cache (LLC). This optimization is enabled by the fact that VBI
uses VBI address directly to access all on-chip caches. There-
fore, a cache line does not need to be backed by a physical
memory mapping in order to be accessed.

In this approach, when a VB is enabled, VBI does not imme-
diately allocate physical memory to the VB. On an LLC miss

1057

to the VB, VBI checks the status of the VB in its correspond-
ing VIT entry. If there is no physical memory backing the
data, VBI does one of two things. (1) If the VB corresponds to
a memory-mapped file or if the required data was allocated
before but swapped out to a backing store, then VBI allocates
physical memory for the region, interrupts the OS to copy the
relevant data from storage into the allocated memory, and
then returns the relevant cache line to the processor. (2) If this
is the first time the cache line is being accessed from memory,
VBI simply returns a zeroed cache line without allocating
physical memory to the VB.
On a dirty cache line writeback from the LLC, if physical

memory is yet to be allocated for the region that the cache line
maps to, VBI first allocates physical memory for the region,
and then performs the writeback. VBI allocates only the
region of the VB containing the evicted cache line. As §4.5.2
describes, our base memory allocation mechanism allocates
physical memory at a 4 KB granularity. Therefore, the region
allocated for the evicted cache line is 4 KB. §5.3 describes an
optimization that eagerly reserves a larger amount of physical
memory for a VB during allocation, to reduce the overall
translation overhead.

5.2. Flexible Address Translation Structures

For each VB, VBI chooses one of three types of address
translation structures, depending on the needs of the VB
and the physical memory availability. The first type directly
maps the VB to physical memory when enough contiguous
memory is available. With this mapping, a single TLB en-
try is sufficient to maintain the translation for the entire VB.
The second type uses a single-level table, where the VB is
divided into equal-sized blocks of one of the supported size
classes. Each entry in the table maintains the mapping for
the corresponding block. This mapping exploits the fact that
a majority of the data structures are densely allocated inside
their respective VBs. With a single-level table, the mapping
for any region of the VB can be retrieved with a single mem-
ory access. The third type, suitable for sparsely-allocated
VBs, is our base address translation mechanism (described
in §4.5), which uses multi-level page tables where the table
depth is chosen based on the size of the VB.

In our evaluation, we implement a flexible mechanism that
statically chooses a translation structure type based on the
size of the VB. Each 4 KB VB is directly mapped. 128 KB
and 4 MB VBs use a single-level table. VBs of a larger size
class use a multi-level table with as many levels as necessary
to map the VB using 4 KB pages.3 The early reservation
optimization (described in §5.3) improves upon this static
policy by dynamically choosing a translation structure type
from the three types mentioned above based on the available
contiguous physical memory. While we evaluate table-based
translation structures in this work, VBI can be easily extended
to support other structures (e.g., customized per-application
translation structures as proposed in DVMT [4]).

Similar to x86-64, VBI uses multiple types of TLBs to cache
mappings of different granularity. The type of translation
structure used for a VB is stored in the VIT and is cached
in the on-chip VIT Cache. This information enables VBI
to access the right type of TLB. For a fair comparison, our
evaluations use the same TLB type and size for all baselines
and variants of VBI.

3For fair comparison with conventional virtual memory, our evaluations
use a 4 KB granularity to map VBs to physical memory. However, VBI can
flexibly map VBs at the granularity of any available size class.

5.3. Early Reservation of Physical Memory

VBI can perform early reservation of the physical memory
for a VB. To this end, VBI reserves (but does not allocate)
physical memory for the entire VB at the time of memory
allocation, and treats the VB as directly mapped by serving
future memory allocation requests for that VB from that
contiguous reserved region. This optimization is inspired by
prior work on super-page management [90], which reserves
a larger contiguous region of memory than the requested size,
and upgrades the allocated pages to larger super-pages when
enough contiguous pages are allocated in that region.

For VBI’s early reservation optimization, at the time of the
first physical memory allocation request for a VB, the MTL
checks if there is enough contiguous free space in physical
memory to fit the entire VB. If so, it allocates the requested
memory from that contiguous space, andmarks the remaining
free blocks in that contiguous space as reserved for that spe-
cific VB. In order to reduce internal fragmentation when free
physical memory is running low, physical blocks reserved for
a VB may be used by another VB when no unreserved blocks
are available. As a result, the MTL uses a three-level prior-
ity when allocating physical blocks: (1) free blocks reserved
for the VB that is demanding allocation, (2) unreserved free
blocks, and (3) free blocks reserved for other VBs. A VB is con-
sidered directly mapped as long as all its allocated memory
is mapped to a single contiguous region of memory, thereby
requiring just a single TLB entry for the entire VB. If there is
not enough contiguous physical memory available to fit the
entire VB, the early reservation mechanism allocates the VB
sparsely by reserving blocks of the largest size class that can
be allocated contiguously.
With the early reservation approach, memory allocation

is performed at a different granularity than mapping, which
enables VBI to benefit from larger mapping granularities
and thereby minimize the address translation latency, while
eliminating memory allocation for regions that may never
be accessed. To support the early reservation mechanism,
VBI uses the Buddy algorithm [67, 120] to manage free and
reserved regions of different size classes.

6. VBI in Other System Architectures

VBI is designed to easily and efficiently function in vari-
ous system designs. We describe the implementation of VBI
in two important examples of modern system architectures:
virtualized environments and multi-node systems.

6.1. Supporting Virtual Machines

VBI implements address space isolation between virtual
machines (VMs) by partitioning the global VBI address space
among multiple VMs and the host OS. To this end, VBI re-
serves a few bits in the VBI address for the VM ID. Figure 5
shows how VBI implements this for a system supporting 31
virtual machines (ID 0 is reserved for the host). In the VBI ad-
dress, the 5 bits following the size class bits are used to denote
the VM ID. For every new virtual machine in the system, the
host OS assigns a VM ID to be used by the guest OS while as-
signing virtual blocks to processes inside the virtual machine.
VBI partitions client IDs using a similar approach. With ad-
dress space division between VMs, a guest VM is unaware
that it is virtualized, and it can allocate/deallocate/access VBs
without having to coordinate with the host OS. Sharing VBs
across multiple VMs is possible, but requires explicit coordi-
nation with the host OS.

1058

100 VM ID VBID offset

3b 5b 24 bits 32 bits

Figure 5: Partitioning the VBI address space among virtual
machines, using the 4 GB size class (100) as an example.

6.2. Supporting Multi-Node Systems

There are many ways to implement VBI in multi-node sys-
tems. Our initial approach provides each node with its own
MTL. VBI equally partitions VBs of each size class among
the MTLs, with the higher order bits of VBID indicating the
VB’s home MTL. The home MTL of a VB is the only MTL that
manages the VB’s physical memory allocation and address
translation. When allocating a VB to a process, the OS at-
tempts to ensure that the VB’s home MTL is in the same node
as the core executing the process. During phase changes, the
OS can seamlessly migrate data from a VB hosted by one MTL
to a VB hosted by another MTL. We leave the evaluation of
this approach and exploration of other ways of integrating
VBI with multi-node systems to future work.

7. Evaluation

We evaluate VBI for two concrete use cases. First, we
evaluate how VBI reduces address translation overheads in
native and virtualized environments (§7.2.1 and §7.2.2, respec-
tively). Second, we evaluate the benefits that VBI offers in har-
nessing the full potential of two main memory architectures
that are tightly dependent on the data mapping: (1) a hybrid
PCM–DRAM memory architecture; and (2) TL-DRAM [74], a
heterogeneous-latency DRAM architecture (§7.3).

7.1. Methodology

For our evaluations, we use a heavily-customized version
of Ramulator [65] to faithfully model all components of the
memory subsystem (including TLBs, page tables, the page
table walker, and the page walk cache), as well as the function-
ality of memory management calls (e.g., malloc, realloc,
free). We have released this modified version of Ramula-
tor [113]. Table 1 summarizes the main simulation parame-
ters. Our workloads consist of benchmarks from SPECspeed
2017 [126], SPEC CPU 2006 [125], TailBench [48], and Graph
500 [44]. We identify representative code regions for the SPEC
benchmarks using SimPoint [96]. For TailBench applications,
we skip the first five billion instructions. For Graph 500, we
mark the region of interest directly in the source code. We
use an Intel Pintool [81] to collect traces of the representative
regions of each of our benchmarks. For our evaluations, we
first warm up the system with 100 million instructions, and
then run the benchmark for 1 billion instructions.

CPU 4-wide issue, OOO, 128-entry ROB
L1 Cache 32 KB, 8-way associative, 4 cycles
L2 Cache 256 KB, 8-way associative, 8 cycles
L3 Cache 8 MB (2 MB per-core), 16-way associative, 31 cycles

L1 DTLB
4 KB pages: 64-entry, fully associative
2 MB pages: 32-entry, fully associative

L2 DTLB 4 KB and 2 MB pages: 512-entry, 4-way associative
Page Walk Cache 32-entry, fully associative

DRAM
DDR3-1600, 1 channel, 1 rank/channel
8 banks/rank, open-page policy

DRAM Timing [88] tRCD=5cy, tRP=5cy, tRRDact=3cy, tRRDpre=3cy
PCM PCM-800, 1 channel, 1 rank/channel, 8 banks/rank
PCM Timing [72] tRCD=22cy, tRP=60cy, tRRDact=2cy, tRRDpre=11cy

Table 1: Simulation configuration.

7.2. Use Case 1: Address Translation

We evaluate the performance of seven baseline systems to
compare with VBI: (1) Native: applications run natively on an
x86-64 system with only 4 KB pages; (2) Native-2M: Native but

with only 2 MB pages; (3) Virtual: applications run inside a vir-
tual machine with only 4 KB pages; (4) Virtual-2M: Virtual but
with only 2 MB pages;4 (5) Perfect TLB: an unrealistic version
of Native with no L1 TLB misses (i.e., no address translation
overhead); (6) VIVT: Native with VIVT on-chip caches; and
(7) Enigma-HW-2M: applications run natively in a system with
Enigma [137]. Enigma uses a system-wide unique intermedi-
ate address space to defer address translation until data must
be retrieved from physical memory. A centralized translation
cache (CTC) at the memory controller performs intermediate-
to-physical address translation. However, unlike VBI, Enigma
asks the OS to perform the translation on a CTC miss, and
to explicitly manage address mapping. Therefore, Enigma’s
benefits do not seamlessly extend to programs running inside
a virtual machine. We evaluate Enigma with a 16K-entry
centralized translation cache (CTC) that we enhance with
hardware-managed page walks and 2 MB pages.
We evaluate the performance of three VBI systems:

(1) VBI-1: inherently virtual caches (§3.5) along with our flexi-
ble translation mechanism that maps VBs using a 4 KB granu-
larity (§4.5.2) , (2) VBI-2: VBI-1 with delayed physical memory
allocation (allocates the 4 KB region of the VB that the dirty
cache line evicted from the last-level cache belongs to). (§5.1),
and (3) VBI-Full: VBI-2 with early reservation (§5.3). VBI-1 and
VBI-2 manage memory at 4 KB granularity, while VBI-Full uses
early reservation to support all of the size classes listed in
§4.1.1 for VB allocation, providing similar benefits to large
page support and direct mapping. We first present results
comparing VBI-1 and VBI-2 with Native, Virtual, VIVT, and Per-
fect TLB (§7.2.1). We then present results comparing VBI-Full
with Native-2M, Enigma-HW-2M, and Perfect TLB (§7.2.2).

7.2.1. Results with 4 KB Pages. Figure 6 plots the perfor-
mance of Virtual, VIVT, VBI-1, VBI-2, and Perfect TLB normalized
to the performance of Native, for a single-core system. We
also show VBI-Full as a reference that shows the full poten-
tials of VBI which VBI-1 and VBI-2 do not enable. mcf has an
overwhelmingly high number of TLB misses. Consequently,
mechanisms that reduce TLB misses greatly improve mcf ’s
performance, to the point of skewing the average significantly.
Therefore, the figure also presents the average speedup with-
out mcf. We draw five observations from the figure.

First, VBI-1 outperforms Native by 50%, averaged across all
benchmarks (25% without mcf). This performance gain is a
direct result of (1) inherently virtual on-chip caches in VBI
that reduce the number of address translation requests, and
(2) fewer levels of address translation for smaller VBs, which
reduces the number of translation-related memory accesses
(i.e., page walks).

Second, Perfect TLB serves as an upper bound for the per-
formance benefits of VBI-1. However, by employing flexible
translation structures, VBI-1 bridges the performance gap
between Native and Perfect TLB by 52%, on average.

Third, when accessing regions for which no physical mem-
ory is allocated yet, VBI-2 avoids both the memory requests
themselves and any translation-related memory accesses for
those requests. Therefore, VBI-2 enables benefits over and
beyond solely reducing the number of page walks, as it fur-
ther improves the overall performance by reducing the num-
ber of memory requests accessing the main memory as well.
Consequently, for many memory-intensive applications, VBI-
2 outperforms Perfect TLB. Compared to Perfect TLB, VBI-2

4We augment this system with a 2D page walk cache, which is shown
to improve the performance of guest workloads [14].

1059

Figure 6: Performance of systems with 4KB pages (normalized to Native).

reduces the total number of DRAM accesses (including the
translation-related memory accesses) by 62%, averaged across
applications that outperform Perfect TLB, and by 46% across all
applications. Overall, VBI-2 outperforms Native by an average
of 118% (53% without mcf).
Fourth, by performing address translations only for and

in parallel with LLC accesses, VIVT outperforms Native by
31% on average (17% without mcf). This performance gain
is due to reducing the number of translation requests and
therefore decreasing the number of TLB misses using VIVT
caches. However, VBI-1 and VBI-2 gain an extra 19% and
87% performance on average, respectively, over VIVT. These
improvements highlight VBI’s ability to improve performance
beyond only employing VIVT caches.

Finally, our results indicate that due to considerably higher
translation overhead, Virtual significantly slows down appli-
cations compared to Native (44% on average). As described
in §3.5, once an application running inside a virtual machine
is attached to its VBs, VBI incurs no additional translation
overhead compared to running natively. As a result, in virtu-
alized environments that use only 4K pages, VBI-1 and VBI-2
achieve an average performance of 2.6× and 3.8×, respec-
tively, compared to Virtual.

We conclude that even when mapping and allocating VBs
using 4 KB granularity only, both VBI-1 and VBI-2 provide
large benefits over a wide range of baseline systems, due to
their effective optimizations to reduce address translation
and memory allocation overheads. VBI-Full further improves
performance by mapping VBs using larger granularities (as
we elaborate in §7.2.2).

7.2.2. Results with Large Pages. Figure 7 plots the perfor-
mance of Virtual-2M, Enigma-HW-2M, VBI-Full, and Perfect TLB
normalized to the performance of Native-2M. We enhance the
original design of Enigma [137] by replacing the OS system
call handler for address translation on a CTCmiss with a com-
pletely hardware-managed address translation, similar to VBI.
For legibility, the figure shows results for only a subset of the
applications. However, the chosen applications capture the
behavior of all the applications, and the average (and average
without mcf) is calculated across all evaluated applications.
We draw three observations from the figure.

First, managing memory at 2 MB granularity improves the
performance of applications compared to managing memory
at 4 KB granularity. This is because (1) the larger page size
lowers the average TLB miss count (e.g., 66% lower for Native-
2M compared to Native), and (2) requires fewer page table
accesses on average to serve TLB misses (e.g., 73% fewer for
Native-2M compared to Native).
Second, Enigma-HW-2M improves overall performance for

programs running natively on the system by 34% compared
to Native-2M, averaged across all benchmarks (including mcf).
The performance gain is a direct result of (1) the very large

Figure 7: Performance with large pages (norm. to Native-2M).

CTC (16K entries), which reduces the number of translation-
related memory accesses by 89% on average compared to
Native-2M; and (2) our hardware-managed address translation
enhancement, which removes the costly system calls on each
page walk request.

Third, VBI-Full, with all three of our optimizations in §5,
maps most VBs using direct mapping, thereby significantly
reducing the number of TLB misses and translation-related
memory accesses compared to Native-2M (on average by 79%
and 99%, respectively). In addition, VBI-Full retains the ben-
efits of VBI-2, which reduces the number of overall DRAM
accesses. VBI-Full reduces the total number of DRAM accesses
(including translation-related memory accesses) by 56% on
average compared to Perfect TLB. Consequently, VBI-Full out-
performs all four comparison points including Perfect TLB.
Specifically, VBI-Full improves performance by 77% compared
to Native-2M, 43% compared to Enigma-HW-2M and 89% com-
pared to Virtual-2M.

We conclude that by employing all of the optimizations that
it enables, VBI significantly outperforms all of our baselines
in both native and virtualized environments.

7.2.3. Multicore Evaluation. Figure 8 compares the
weighted speedup of VBI-Full against four baselines in a quad-
core system. We examine six different workload bundles,
listed in Table 2, which consist of the applications studied in
our single-core evaluations. From the figure, we make two
observations. First, averaged across all bundles, VBI-Full im-
proves performance by 38% and 18%, compared to Native and
Native-2M, respectively. Second, VBI-Full outperforms Virtual
and Virtual-2M by an average 67% and 34%, respectively. We
conclude that the benefits of VBI persist even in the presence
of higher memory load in multicore systems.

wl1 deepsjeng, omnetpp, bwaves, lbm wl4 milc, namd, GemsFDTD, bzip2
wl2 graph500, astar, img-dnn, moses wl5 bzip2, GemsFDTD, sjeng, mcf
wl3 mcf, GemsFDTD, astar, milc wl6 namd, bzip2, astar, sjeng

Table 2: Multiprogrammed workload bundles.

1060

Figure 8: Multiprogrammedworkload performance (normal-
ized to Native).

7.3. Use Case 2: Memory Heterogeneity
As mentioned in §1, extracting the best performance

from heterogeneous-latency DRAM architectures [22, 23,
64, 73, 74, 80, 82, 117, 124] and hybrid memory architec-
tures [29, 57, 78, 103, 106–108, 134, 135, 138] critically depends
on mapping data to the memory that suits the data require-
ments, and migrating data as its requirements change. We
quantitatively show the performance benefits of VBI in ex-
ploiting heterogeneity by evaluating (1) a PCM–DRAM hy-
brid memory [107]; and (2) TL-DRAM [74], a heterogeneous-
latency DRAM architecture. We evaluate five systems: (1) VBI
PCM–DRAM and (2) VBI TL-DRAM, in which VBI maps and
migrates frequently-accessed VBs to the low-latency memory
(the fast memory region in the case of TL-DRAM); (3) Hotness-
Unaware PCM–DRAM and (4) Hotness-Unaware TL-DRAM, where
the mapping mechanism is unaware of the hotness (i.e., the
access frequency) of the data and therefore do not necessar-
ily map the frequently-accessed data to the fast region; and
(5) IDEAL in each plot refers to an unrealistic perfect mapping
mechanism, which uses oracle knowledge to always map
frequently-accessed data to the fast portion of memory.

Figures 9 and 10 show the speedup obtained byVBI-enabled
mapping over the hotness-unaware mapping in a PCM–
DRAM hybrid memory and in TL-DRAM, respectively. We
draw three observations from the figures. First, for PCM–
DRAM, VBI PCM–DRAM improves performance by 33% on
average compared to the Hotness-Unaware PCM–DRAM, by
accurately mapping the frequently-accessed data structures
to the low-latency DRAM. Second, by mapping frequently-
accessed data to the fast DRAM regions, VBI TL-DRAM takes
better advantage of the benefits of TL-DRAM, with a perfor-
mance improvement of 21% on average compared to Hotness-
Unaware TL-DRAM. Third, VBI TL-DRAM performs only 5.3%
slower than IDEAL, which is the upper bound of performance
achieved by mapping hot data to the fast regions of DRAM.

Figure 9: Performance of VBI PCM-DRAM (normalized to
data-hotness-unaware mapping).

We conclude that VBI is effective for enabling efficient data
mapping and migration in heterogeneous memory systems.

8. Related Work
To our knowledge, VBI is the first virtual memory frame-

work to fully delegate physical memory allocation and ad-

Figure 10: Performance of VBI TL-DRAM (normalized to
data-hotness-unaware mapping).

dress translation to the hardware. This section compares VBI
with other virtual memory designs and related works.

Virtual Memory in Modern Architectures. Modern
virtual memory architectures, such as those employed as part
of modern instruction set architectures [5, 50, 54, 55], have
evolved into sophisticated systems. These architectures have
support for features such as large pages, multi-level page
tables, hardware-managed TLBs, and variable-size memory
segments, but require significant system software support
to enable these features and to manage memory. While sys-
tem software support provides some flexibility to adapt to
new ideas, it must communicate with hardware through a
rigid contract. Such rigid hardware/software communica-
tion introduces costly overheads for many applications (e.g.,
high overheads with fixed-size per-application virtual ad-
dress spaces, for applications that only need a small fraction
of the space) and prevents the easy adoption of significantly
different virtual memory architectures or ideas that depend
on large changes to the existing virtual memory framework.
VBI is a completely different framework from existing virtual
memory architectures. It supports the functionalities of ex-
isting virtual memory architectures, but can do much more
by reducing translation overheads, inherently and seamlessly
supporting virtual caches, and avoiding unnecessary physi-
cal memory allocation. These benefits come from enabling
completely hardware-managed physical memory allocation
and address translation, which no modern virtual memory
architecture does.

Several memory management frameworks [7,8,75,101,104,
130] are designed to minimize the virtual memory overhead
in GPUs. Unlike VBI, these works provide optimizations
within the existing virtual memory design, so their benefits are
constrained to the design of conventional virtual memory.
OS Support for Virtual Memory. There has been ex-

tensive work on how address spaces should be mapped to
execution contexts [79]. Unix-like OSes provide a rigid one-
to-one mapping between virtual address spaces and pro-
cesses [84, 109]. SpaceJMP [31] proposes a design in which
processes can jump from one virtual address space to another
in order to access larger amounts of physical memory. Single
address space OSes rely on system-software-based mecha-
nisms to expose a single global address space to processes, to
facilitate efficient data sharing between processes [24, 25, 49].
VBI makes use of a similar concept as single address space
OSes with its single globally-visible VBI address space. How-
ever, while existing single address space OS designs expose
the single address space to processes, VBI does not do so,
and instead has processes operate on CVT-relative virtual
addresses. This allows VBI to enjoy the same advantages
as single address space OSes (e.g., synonym-/homonym-free
VIVT caches), while providing further benefits (e.g., non-
fixed addresses for shared libraries, hardware-based memory
management). Additionally, VBI naturally supports single

1061

address space sharing between the host OS and guest OSes
in virtualized environments.
User-Space Memory Management. Several OS designs

propose user-space techniques to provide an application with
more control over memory management [4,12,32,33,46,58,66,
115, 132]. For example, the exokernel OS architecture [33, 58]
allows applications to manage their own memory and pro-
vides memory protection via capabilities, thereby minimizing
OS involvement. Do-It-Yourself Virtual Memory Translation
(DVMT) [4] decouples memory translation from protection
in the OS, and allows applications to handle their virtual-to-
physical memory translation. These solutions (1) increase
application complexity and add non-trivial programmer bur-
den to directly manage hardware resources, and (2) do not
expose the rich runtime information available in the hard-
ware to memory managers. In contrast to these works, which
continue to rely on software for physical memory manage-
ment, VBI does not use any part of the software stack for
physical memory management. By partitioning the duties
differently between software and hardware, and, importantly,
performing physical memory management in the memory
controller, VBI provides similar flexibility benefits as user-
space memory management without introducing additional
programmer burden.
Reducing Address Translation Overhead. Several

studies have characterized the overhead of virtual-to-physical
address translation in modern systems, which occurs primar-
ily due to growing physical memory sizes, inflexible mem-
ory mappings, and virtualization [11, 17, 51, 54, 61, 85]. Prior
works try to ameliorate the address translation issue by: (1) in-
creasing the TLB reach to address a larger physical address
space [7, 26, 59, 95, 97, 98, 112, 127]; (2) using TLB speculation
to speed up address translation [10, 94, 100]; (3) introducing
and optimizing page walk caches to store intermediate page
table addresses [9, 14, 15, 34]; (4) adding sharing and coher-
ence between caching structures to share relevant address
translation updates [13,16,34,62,69,98,110,133]; (5) allocating
and using large contiguous regions of memory such as super-
pages [7, 11, 39–41, 99]; (6) improving memory virtualization
with large, contiguous memory allocations and better paging
structures [7,39,40,99,100,112]; and (7) prioritizing page walk
data throughout the memory hierarchy [8]. While all of these
works can mitigate the translation overhead, they build on
top of the existing rigid virtual memory framework and do
not address the underlying overheads inherent to the existing
rigid framework and to software-based memory management.
Unlike these works, VBI is a completely new framework for
virtual memory, which eliminates several underlying sources
of address translation overhead and enables many other ben-
efits (e.g., efficient memory management in virtual machines,
easy extensibility to heterogeneous memory systems). VBI
can be combined with some of the above proposals to further
optimize address translation.

9. Conclusion

We introduce the Virtual Block Interface (VBI), a new vir-
tual memory framework to address the challenges in adapting
conventional virtual memory to increasingly diverse system
configurations and workloads. The key idea of VBI is to
delegate memory management to hardware in the memory
controller. The memory-controller-based memory manage-
ment in VBI leads to many benefits not easily attainable in
existing virtual memory, such as inherently virtual caches,
avoiding 2D page walks in virtual machines, and delayed

physical memory allocation. We experimentally show that
VBI (1) reduces the overheads of address translation by reduc-
ing the number of translation requests and associated mem-
ory accesses, and (2) increases the effectiveness of managing
heterogeneous main memory architectures. We conclude that
VBI is a promising new virtual memory framework that can
enable several important optimizations and increased design
flexibility for virtual memory. We believe and hope that VBI
will open up a new direction and many opportunities for
future work in novel virtual memory frameworks.

Acknowledgments

We thank the anonymous reviewers of ISCA 2019, MICRO
2019, HPCA 2019, and ISCA 2020 for their valuable comments.
We thank our industrial partners, especially Alibaba, Face-
book, Google, Huawei, Intel, Microsoft, and VMware, for
their generous donations. We thank SAFARI group members
for valuable feedback and the stimulating environment.

References
[1] R. Achermann et al., “Separating Translation from Protection in Address Spaces

with Dynamic Remapping,” in HotOS, 2017.
[2] R. Achermann et al., “Mitosis: Transparently Self-Replicating Page-Tables for

Large-Memory Machines,” in ASPLOS, 2020.
[3] T. Ahearn et al., “Virtual Memory System,” U.S. Patent 3 781 808, 1973.
[4] H. Alam et al., “Do-It-Yourself Virtual Memory Translation,” in ISCA, 2017.
[5] Arm Ltd., Arm® Architecture Reference Manual: ARMv8, for ARMv8-A Architec-

ture Profile, 2013.
[6] S. Arramreddy et al., “Pinnacle: IBM MXT in a Memory Controller Chip,” IEEE

Micro, 2001.
[7] R. Ausavarungnirun et al., “Mosaic: A GPU Memory Manager with Application-

Transparent Support for Multiple Page Sizes,” in MICRO, 2017.
[8] R. Ausavarungnirun et al., “MASK: Redesigning the GPU Memory Hierarchy to

Support Multi-Application Concurrency,” in ASPLOS, 2018.
[9] T. W. Barr et al., “Translation Caching: Skip, Don’t Walk (the Page Table),” in

ISCA, 2010.
[10] T. W. Barr et al., “SpecTLB: A Mechanism for Speculative Address Translation,”

in ISCA, 2011.
[11] A. Basu et al., “Efficient Virtual Memory for Big Memory Servers,” in ISCA, 2013.
[12] A. Baumann et al., “The Multikernel: A New OS Architecture for Scalable Multi-

core Systems,” in SOSP, 2009.
[13] S. Bharadwaj et al., “Scalable Distributed Shared Last-Level TLBs Using Low-

Latency Interconnects,” in MICRO, 2018.
[14] R. Bhargava et al., “Accelerating Two-Dimensional Page Walks for Virtualized

Systems,” in ASPLOS, 2008.
[15] A. Bhattacharjee, “Large-Reach Memory Management Unit Caches,” in MICRO,

2013.
[16] A. Bhattacharjee et al., “Shared Last-Level TLBs for Chip Multiprocessors,” in

ISCA, 2011.
[17] A. Bhattacharjee and M. Martonosi, “Characterizing the TLB Behavior of Emerg-

ing Parallel Workloads on Chip Multiprocessors,” in PACT, 2009.
[18] M. Cekleov and M. Dubois, “Virtual-Address Caches Part 1: Problems and Solu-

tions in Uniprocessors,” IEEE Micro, 1997.
[19] M. Cekleov and M. Dubois, “Virtual-Address Caches Part 2: Multiprocessor Is-

sues,” IEEE Micro, 1997.
[20] J. M. Chang and E. F. Gehringer, “A High-Performance Memory Allocator for

Object-Oriented Systems,” TC, 1996.
[21] J. M. Chang et al., “Architectural Support for Dynamic Memory Management,”

in ICCD, 2000.
[22] K. K. Chang et al., “Understanding Latency Variation in Modern DRAM Chips:

Experimental Characterization, Analysis, and Optimization,” in SIGMETRICS,
2016.

[23] K. K. Chang et al., “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-
Subarray Data Movement in DRAM,” in HPCA, 2016.

[24] J. S. Chase et al., “Sharing and Protection in a Single-Address-Space Operating
System,” TOCS, 1994.

[25] J. S. Chase et al., “Lightweight Shared Objects in a 64-bit Operating System,” in
OOPSLA, 1992.

[26] G. Cox and A. Bhattacharjee, “Efficient Address Translation for Architectures
with Multiple Page Sizes,” in ASPLOS, 2017.

[27] G. DeCandia et al., “Dynamo: Amazon’s Highly Available Key-Value Store,” in
SOSP, 2007.

[28] P. J. Denning, “Virtual Memory,” CSUR, 1970.
[29] G. Dhiman et al., “PDRAM: A Hybrid PRAM and DRAMMain Memory System,”

in DAC, 2009.
[30] Y. Du et al., “Supporting Superpages in Non-Contiguous Physical Memory,” in

HPCA, 2015.
[31] I. El Hajj et al., “SpaceJMP: Programming with Multiple Virtual Address Spaces,”

in ASPLOS, 2016.
[32] D. R. Engler et al., “AVM: Application-Level Virtual Memory,” in HotOS, 1995.
[33] D. R. Engler et al., “Exokernel: An Operating System Architecture for

Application-Level Resource Management,” in SOSP, 1995.
[34] A. Esteve et al., “Exploiting Parallelization on Address Translation: Shared Page

Walk Cache,” in OMHI, 2014.
[35] Facebook, Inc., “RocksDB: A Persistent Key–Value Store,” https://rocksdb.org/.

1062

[36] J. Fan, “Nested Virtualization in Azure,” https://azure.microsoft.com/en-us/blog/
nested-virtualization-in-azure/, Microsoft Corp., 2017.

[37] B. Fitzpatrick, “Distributed Caching with Memcached,” Linux J., 2004.
[38] J. Fotheringham, “Dynamic Storage Allocation in the Atlas Computer, Including

an Automatic Use of a Backing Store,” CACM, 1961.
[39] J. Gandhi et al., “Efficient Memory Virtualization: Reducing Dimensionality of

Nested Page Walks,” in MICRO, 2014.
[40] J. Gandhi et al., “Agile Paging: Exceeding the Best of Nested and Shadow Paging,”

in ISCA, 2016.
[41] J. Gandhi et al., “Range Translations for Fast Virtual Memory,” IEEE Micro, 2016.
[42] S. Gerber et al., “Not Your Parents’ Physical Address Space,” in HotOS, 2015.
[43] Google, Inc., “Compute Engine: Enabling Nested Virtualization

for VM Instances,” https://cloud.google.com/compute/docs/instances/
enable-nested-virtualization-vm-instances.

[44] Graph 500, “Graph 500 Large-Scale Benchmarks,” http://www.graph500.org/.
[45] M. Gupta et al., “Reliability-Aware Data Placement for Heterogeneous Memory

Architecture,” in HPCA, 2018.
[46] S. M. Hand, “Self-Paging in the Nemesis Operating System,” in OSDI, 1999.
[47] S. Haria et al., “Devirtualizing Memory in Heterogeneous Systems,” in ASPLOS,

2018.
[48] Harshad Kasture and Daniel Sanchez, “TailBench Benchmark Suite,” http://

tailbench.csail.mit.edu/.
[49] G. Heiser et al., “The Mungi Single-Address-Space Operating System,” SPRE,

1998.
[50] Hewlett-Packard Company, PA-RISC 1.1 Architecture and Instruction Set Reference

Manual, Third Edition, 1994.
[51] P. Hornyack et al., “A Study of Virtual Memory Usage and Implications for Large

Memory,” Univ. of Washington, Tech. Rep., 2013.
[52] J. Huang et al., “Unified Address Translation for Memory-Mapped SSDs with

FlashMap,” in ISCA, 2015.
[53] Intel Corp., “5-Level Paging and 5-Level EPT,” white paper, 2017.
[54] Intel Corp., Intel® 64 and IA-32 Architectures Software Developer’s Manual, Vol. 3:

System Programming Guide, 2019.
[55] International Business Machines Corp, PowerPC® Microprocessor Family: The

Programming Environments Manual for 32 and 64-bit Microprocessors, 2005.
[56] B. Jacob and T. Mudge, “Virtual Memory in Contemporary Microprocessors,”

IEEE Micro, 1998.
[57] X. Jiang et al., “CHOP: Adaptive Filter-Based DRAM Caching for CMP Server

Platforms,” in HPCA, 2010.
[58] M. F. Kaashoek et al., “Application Performance and Flexibility on Exokernel

Systems,” in SOSP, 1997.
[59] V. Karakostas et al., “Redundant Memory Mappings for Fast Access to Large

Memories,” in ISCA, 2015.
[60] V. Karakostas et al., “Energy-Efficient Address Translation,” in HPCA, 2016.
[61] V. Karakostas et al., “Performance Analysis of the Memory Management Unit

Under Scale-Out Workloads,” in IISWC, 2014.
[62] S. Kaxiras and A. Ros, “A New Perspective for Efficient Virtual-Cache Coher-

ence,” in ISCA, 2013.
[63] T. Kilburn et al., “One-Level Storage System,” IRE Trans. Electronic Computers,

1962.
[64] J. S. Kim et al., “Solar-DRAM: Reducing DRAMAccess Latency by Exploiting the

Variation in Local Bitlines,” in ICCD, 2018.
[65] Y. Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” CAL, 2015.
[66] G. Klein et al., “seL4: Formal Verification of an OS Kernel,” in SOSP, 2009.
[67] K. C. Knowlton, “A Fast Storage Allocator,” CACM, 1965.
[68] O. Kocberber et al., “Meet the Walkers: Accelerating Index Traversals for In-

memory Databases,” in MICRO, 2013.
[69] M. K. Kumar et al., “Latr: Lazy Translation Coherence,” in ASPLOS, 2018.
[70] Y. Kwon et al., “Coordinated and Efficient Huge Page Management with Ingens,”

in OSDI, 2016.
[71] Y. Kwon et al., “Ingens: Huge Page Support for the OS and Hypervisor,” OSR,

2017.
[72] B. C. Lee et al., “Architecting Phase Change Memory as a Scalable DRAM Alter-

native,” in ISCA, 2009.
[73] D. Lee et al., “Design-Induced Latency Variation in Modern DRAM Chips: Char-

acterization, Analysis, and Latency Reduction Mechanisms,” in SIGMETRICS,
2017.

[74] D. Lee et al., “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Ar-
chitecture,” in HPCA, 2013.

[75] C. Li et al., “A Framework for Memory Oversubscription Management in Graph-
ics Processing Units,” in ASPLOS, 2019.

[76] W. Li et al., “A Page-Based Hybrid (Software-Hardware) Dynamic Memory Al-
locator,” CAL, 2006.

[77] W. Li et al., “Feasibility of Decoupling Memory Management from the Execution
Pipeline,” J. Syst. Archit., 2007.

[78] Y. Li et al., “Utility-Based Hybrid Memory Management,” in CLUSTER, 2017.
[79] A. Lindstrom et al., “The Grand Unified Theory of Address Spaces,” in HotOS,

1995.
[80] S.-L. Lu et al., “Improving DRAM Latency with Dynamic Asymmetric Subarray,”

in MICRO, 2015.
[81] C.-K. Luk et al., “Pin: Building Customized Program Analysis Tools with Dy-

namic Instrumentation,” in PLDI, 2005.
[82] H. Luo et al., “CLR-DRAM: A Low-Cost DRAM Architecture Enabling Dynamic

Capacity-Latency Trade-Off,” in ISCA, 2020.
[83] Y. Luo et al., “Characterizing Application Memory Error Vulnerability to Opti-

mize Data Center Cost via Heterogeneous-Reliability Memory,” in DSN, 2014.
[84] M. K. McKusick et al., The Design and Implementation of the FreeBSD Operating

System. Addison-Wesley Professional, 2014.
[85] T. Merrifield and H. R. Taheri, “Performance Implications of Extended Page Ta-

bles on Virtualized x86 Processors,” in VEE, 2016.
[86] M. R. Meswani et al., “Heterogeneous Memory Architectures: A HW/SW Ap-

proach for Mixing Die-Stacked and Off-Package Memories,” in HPCA, 2015.
[87] J. Meza et al., “A Case for Efficient Hardware/Software CooperativeManagement

of Storage and Memory,” inWEED, 2013.
[88] Micron Technology, Inc., 2Gb: x4, x8, x16 DDR3 SDRAM Data Sheet, 2016.
[89] MonetDB B.V., “MonetDB Column Store,” https://www.monetdb.org/.

[90] J. Navarro et al., “Practical, Transparent Operating System Support for Super-
pages,” in OSDI, 2002.

[91] Neo4j, Inc., “Neo4j Graph Platform,” https://neo4j.com/.
[92] R. Nishtala et al., “Scaling Memcache at Facebook,” in NSDI, 2013.
[93] Oracle Corp., “TimesTen In-Memory Database,” https://www.oracle.com/

database/technologies/related/timesten.html.
[94] M.-M. Papadopoulou et al., “Prediction-Based Superpage-Friendly TLB Designs,”

in HPCA, 2015.
[95] C. H. Park et al., “Hybrid TLB Coalescing: Improving TLB Translation Coverage

Under Diverse Fragmented Memory Allocations,” in ISCA, 2017.
[96] E. Perelman et al., “Using SimPoint for Accurate and Efficient Simulation,” in

SIGMETRICS, 2003.
[97] B. Pham et al., “Increasing TLB Reach by Exploiting Clustering in Page Transla-

tions,” in HPCA, 2014.
[98] B. Pham et al., “CoLT: Coalesced Large-Reach TLBs,” in MICRO, 2012.
[99] B. Pham et al., “Large Pages and Lightweight Memory Management in Virtual-

ized Environments: Can You Have It Both Ways?” in MICRO, 2015.
[100] B. Pham et al., “Using TLB Speculation to Overcome Page Splintering in Virtual

Machines,” Rutgers Univ., Tech. Rep. DCS-TR-713, 2015.
[101] B. Pichai et al., “Architectural Support for Address Translation on GPUs: Design-

ing Memory Management Units for CPU/GPUs with Unified Address Spaces,” in
ASPLOS, 2014.

[102] J. Picorel et al., “Near-Memory Address Translation,” in PACT, 2017.
[103] B. Pourshirazi and Z. Zhu, “Refree: A Refresh-Free Hybrid DRAM/PCM Main

Memory System,” in IPDPS, 2016.
[104] J. Power et al., “Supporting x86-64 Address Translation for 100s of GPU Lanes,”

in HPCA, 2014.
[105] A. Prodromou et al., “MemPod: A Clustered Architecture for Efficient and Scal-

able Migration in Flat Address Space Multi-Level Memories,” in HPCA, 2017.
[106] M. K. Qureshi et al., “Scalable High Performance Main Memory System Using

Phase-Change Memory Technology,” in ISCA, 2009.
[107] L. Ramos et al., “Page Placement in Hybrid Memory Systems,” in ICS, 2011.
[108] S. Raoux et al., “Phase-Change RandomAccessMemory: A Scalable Technology,”

IBM JRD, 2008.
[109] D. M. Ritchie and K. Thompson, “The UNIX Time-Sharing System,” The Bell Sys-

tem Technical Journal, 1978.
[110] B. F. Romanescu et al., “UNified Instruction/Translation/Data (UNITD) Coher-

ence: One Protocol to Rule Them All,” in HPCA, 2010.
[111] J. H. Ryoo et al., “SILC-FM: Subblocked InterLeaved Cache-Like Flat Memory

Organization,” in HPCA, 2017.
[112] J. H. Ryoo et al., “Rethinking TLB Designs in Virtualized Environments: A Very

Large Part-of-Memory TLB,” in ISCA, 2017.
[113] SAFARI Research Group, “Ramulator-VBI — GitHub Repository,” https://github.

com/CMU-SAFARI/Ramulator-VBI.git.
[114] SAP SE, “SAP HANA: In-Memory Data Platform,” https://www.sap.com/

products/hana.html.
[115] D. Schatzberg et al., “EbbRT: A Framework for Building Per-Application Library

Operating Systems,” in OSDI, 2016.
[116] V. Seshadri et al., “The Dirty-Block Index,” in ISCA, 2014.
[117] V. Seshadri et al., “RowClone: Fast and Energy-Efficient In-DRAM Bulk Data

Copy and Initialization,” in MICRO, 2013.
[118] V. Seshadri et al., “Page Overlays: An Enhanced Virtual Memory Framework to

Enable Fine-Grained Memory Management,” in ISCA, 2015.
[119] S. H. SeyyedAghaei Rezaei et al., “NoM: Network-on-Memory for Inter-Bank

Data Transfer in Highly-Banked Memories,” CAL, 2020.
[120] K. K. Shen and J. L. Peterson, “A Weighted Buddy Method for Dynamic Storage

Allocation,” CACM, 1974.
[121] S. Shin et al., “Scheduling Page Table Walks for Irregular GPU Applications,” in

ISCA, 2018.
[122] J. Sim et al., “Transparent Hardware Management of Stacked DRAM as Part of

Memory,” in MICRO, 2014.
[123] D. Skarlatos et al., “Elastic Cuckoo Page Tables: Rethinking Virtual Memory

Translation for Parallelism,” in ASPLOS, 2020.
[124] Y. H. Son et al., “Reducing Memory Access Latency with Asymmetric DRAM

Bank Organizations,” in ISCA, 2013.
[125] Standard Performance Evaluation Corp., “SPEC CPU® 2006,” https://www.spec.

org/cpu2006/.
[126] Standard Performance Evaluation Corp., “SPEC CPU® 2017 Benchmark Suite,”

https://www.spec.org/cpu2017/.
[127] M. Talluri and M. D. Hill, “Surpassing the TLB Performance of Superpages with

Less Operating System Support,” in ASPLOS, 1994.
[128] A. Tumanov et al., “Asymmetry-Aware Execution Placement on Manycore

Chips,” in SFMA, 2013.
[129] N. Vijaykumar et al., “The Locality Descriptor: A Holistic Cross-Layer Abstrac-

tion to Express Data Locality in GPUs,” in ISCA, 2018.
[130] N. Vijaykumar et al., “Zorua: A Holistic Approach to Resource Virtualization in

GPUs,” in MICRO, 2016.
[131] N. Vijaykumar et al., “A Case for Richer Cross-Layer Abstractions: Bridging the

Semantic Gap with Expressive Memory,” in ISCA, 2018.
[132] D. Wentzlaff and A. Agarwal, “Factored Operating Systems (fos): The Case for a

Scalable Operating System for Multicores,” OSR, 2009.
[133] Z. Yan et al., “Hardware Translation Coherence for Virtualized Systems,” in ISCA,

2017.
[134] H. Yoon et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memo-

ries,” in ICCD, 2012.
[135] X. Yu et al., “Banshee: Bandwidth-Efficient DRAM Caching via Soft-

ware/Hardware Cooperation,” in MICRO, 2017.
[136] Z. Yu et al., “Labeled RISC-V: A New Perspective on Software-Defined Architec-

ture,” in CARRV, 2017.
[137] L. Zhang et al., “Enigma: Architectural and Operating System Support for Re-

ducing the Impact of Address Translation,” in ICS, 2010.
[138] W. Zhang and T. Li, “Exploring Phase Change Memory and 3D Die-Stacking

for Power/Thermal Friendly, Fast and Durable Memory Architectures,” in PACT,
2009.

[139] T. Zheng et al., “SIPT: Speculatively Indexed, Physically Tagged Caches,” in
HPCA, 2018.

1063

