
vPIM: Efficient Virtual Address Translation for
Scalable Processing-in-Memory Architectures

Amel Fatima∗, Sihang Liu†, Korakit Seemakhupt∗, Rachata Ausavarungnirun‡, and Samira Khan∗
∗University of Virginia †University of Waterloo ‡King Mongkut’s University of Technology North Bangkok

Abstract—3D-stacked memory technologies make it possible
to integrate computation logic into the memory stack to reduce
data movement between CPU and memory, enabling processing-
in-memory (PIM). PIM systems scale in capacity and bandwidth
by connecting multiple PIM stacks through a memory network.
They also need to be programmable, where having virtual
memory support is critical. Existing address translation schemes,
however, are not optimized for a scalable PIM system. In this
work, we propose VPIM, a virtual address translation scheme for
scalable, multi-stack PIM systems. VPIM optimizes contention of
the memory network in a PIM system and reduces translation
time with pre-translation. Our evaluation shows a speedup of
4.4× and 1.7× compared to conventional radix and cuckoo hash
page tables in eight memory-intensive workloads.

I. INTRODUCTION

Data-intensive applications spend significant time and en-
ergy in moving data between CPU and memory [2, 3]. The
3D-stacked memory technologies, such as High Bandwidth
Memory (HBM) [9], enable the integration of computation in-
side memory to reduce this data movement overhead. E.g., the
logic layer in memory vaults can have computation units [2,
3]. This paradigm shift is called processing-in-memory (PIM).

A PIM system needs to be scalable, as a single memory
stack has limited capacity and bandwidth. For scalability,
multiple PIM stacks are connected over a memory network
[3, 21]. We refer to accesses to other stacks as cross-stack
accesses, which have much longer memory access latency.
Another practical requirement for PIM systems is memory
management. A PIM system can either use a separate physical
address space [7, 17] or a unified virtual memory [16] between
the CPU and PIM cores. Maintaining a separate physical ad-
dress space introduces programming difficulties due to explicit
data copying from/to the host processing. In comparison, a
unified virtual memory is easier to program, and therefore,
architecting virtual memory is desirable [15].

Support for a unified virtual memory comes at the cost of
virtual-to-physical address translation. One approach is to for-
ward the address translation from PIM to the CPU side [6, 19].
Such a scheme can introduce high communication overhead,
overshadowing PIM’s benefit of reduced data movement. An
alternative approach is to add a Page Table Walker (PTWer)
and a TLB near the PIM cores [6, 21]. This approach reduces
the communication overhead and, is the approach that we
will follow in this paper. However, the area constraint in PIM
does not allow for a large TLB to mitigate Page Table Walks
(PTWs). In a conventional radix page table, a PTW requires
memory accesses in a pointer-chasing pattern to access the

multi-level radix page table [25], which cannot benefit from
the abundant memory parallelism in PIM. Even worse, this
scheme introduces slower cross-stack access.

Hash page table [8] is an alternative approach. Recent pro-
posals [25] integrate an efficient collision resolution technique,
cuckoo hashing [20], that enables sending parallel accesses
to the hash table, thus hiding the latency due to collisions.
Unfortunately, direct integration of the cuckoo hash page table
into PIM leads to parallel accesses toward different PIM
stacks, causing increased network contention.

The goal of this work is to redesign the address translation
scheme for scalable multi-stack PIM systems. We propose
VPIM, a virtual address translation scheme designed for multi-
stack PIM systems that leverages the parallelism within each
PIM stack without incurring excessive cost due to cross-stack
accesses, by adopting two key ideas.

Network-contention-aware hash: In Cuckoo hashing, par-
allel hash functions map an address to random hash table
locations. We can limit the number of cross-stack access in a
PTW if we map all indexes associated with a virtual address
to the same stack. Based on this key insight, we propose a
network-contention-aware scheme that hashes all the indexes
of a virtual address to the same stack. This approach exploits
the abundant memory bandwidth within a stack and minimizes
cross-stack hash table accesses during a PTW.

Pre-translation: Besides memory parallelism, PIM also
has abundant parallel processors. PIM-friendly programs usu-
ally feature high parallelism—often manifest as independent
loops that parallelly execute on PIM processors. Thus, it is
possible to execute future parallel iterations ahead of time
to enable pre-translation. However, the limited vault area
does not permit extra logic. Past research has shown that
triggering memory accesses that lead to address translation
only requires a small fraction of instructions as compared to
the original procedure [11]. Thus, we propose to repurpose a
few PIM cores as pre-translation cores to trigger future address
translations, moving PTWs off the critical path.

We summarize the contributions as the following:
• This work proposes VPIM, an efficient address-

translation scheme for scalable, multi-stack PIM systems.
• VPIM minimizes cross-stack hash page table accesses by

hashing all indexes associated with an address to the same
stack, and mitigates translation time with pre-translation.

• To evaluate VPIM, we model a scalable, multi-stack PIM
system using ZSim [24] which shows a speedup of 4.4×
and 1.7× over radix and Cuckoo hash table schemes.

1

S0 S3 S8

S1 S2 S9

S4 S7

S5 S6

S10

S12 S15

H
os

t
C

P
U

Crossbar Switch

Link 0 Link 3

… Cache TLB PTW

Vault Controller

Switch

Network of Stacks (Dragonfly)(a)

Hash Table

PIM Stack with 1 Core/Vault(b) Vault Logic(c)

Core 31

Vault

Vault 0

Vault Logic
Core 0

Hash Table
Vault 31

Vault Logic
Core 31

…

S11

S13 S14

Fig. 1. Overview of PIM Stacks and the Architecture

(a)

CR3

L3
L4

Virtual Address (VA1)

PPN

Address Translation in Cuckoo Hash Table

[38:30][47:39]

Address Translation in x86-64

[29:21]

PPN
L2

L1

[20:12] h1T1 h2

VA5

 VA1

…

T2

 VA2

 VA4…

Virtual Address (VA1)

(b)

Fig. 2. Address Translation in (a) radix page table and (b) cuckoo hash table.

II. BACKGROUND AND MOTIVATION

A. Processing-in-Memory (PIM) Architecture

Figure 1 shows the organization of the PIM system that is
followed in the paper. It consists of 16 memory stacks con-
nected over a memory network, following dragonfly topology
[3, 21]. Each stack consists of 32 vertical DRAM partitions,
called vaults, each with its vault controller and a low-profile
processor in the logic layer, enabling vaults to operate in
parallel. Vaults are interconnected with a crossbar switch.

B. Virtual Memory

Virtual memory aims to provide a view of a large memory
address space by translating virtual addresses to physical
addresses available in the system during each memory access.
To enable virtual memory, the OS maintains page tables for
the address mapping at page granularity, and TLBs in the CPU
cache these mappings near the processor. Next, we will talk
about different page table schemes.

Radix Page Table is a commonly used approach [1] which
uses a radix tree to maintain the address mappings. Figure 2a
demonstrates a 48-bit virtual address, wherein the 36 higher-
order bits correspond to the virtual page number (VPN) and
are divided into four 9-bit indexes; each index corresponds
to one level in the radix tree (i.e., L4—L1). A translation is
referred to as a page table walk (PTW), accessing four levels
in the radix tree to obtain the physical page number (PPN),
following a pointer-chasing memory access pattern.

Hash page table is an alternative design that uses a hash
function to map VPNs to PPNs. Compared to the radix page
table, the hash page table only takes one memory access.
However, it suffers from a major overhead of hash collisions
that can degrade its performance. Recent works [25] have
proposed a resurgence of this page table design by adopting
Cuckoo hashing [20] to mitigate hash collisions.

Cuckoo hashing [20] is a collision resolution algorithm
for hash page tables, that allows an element to have n hash
locations, i.e., n-ary. An entry can reside in one of these
locations, which are looked up in parallel. Figure 2b shows

➊ ➋

➌

➍

➊
➋

➌
➍

Fig. 3. Radix page table walk in a multi-stack PIM system.

S11

S10

h1

 Lookup for: VA1

S14

S5

T1 T2h2 h1 h2

❶ TLB Miss #1 for VA1 ➋ TLB Miss #2 for VA2

 VA1

Hash tables (T1/T2) spanning multiple stacks. (S Stack #, VA Virtual Address)

 Lookup for: VA2

 VA5

 VA2

 VA4

Execution timeline here

 S0 S3 S8

S1 S2 S9

S4 S7

 S5 S6

H
os

t
C

P
U

S14

S11

 S10

 S15

S12

S13

❶ PTW at S11 for
TLB Miss #1

❶

➋

➋

S11

S10

T1

 VA1

 VA5

S14

S5

T2

 VA2

 VA4

… … … …

 PTW at S14 for
TLB Miss #2

 PTW at S5 for
TLB Miss #1

PTW at S10 for
TLB Miss #2

Fig. 4. Cuckoo hash lookup in PIM.

lookup operation for the virtual address VA1 in a 2-ary cuckoo
hash table, consisting of two hash functions (h1 and h2) that
correspond to two tables (T1 and T2). Function h1 and h2
hash VA1 and generate two indexes that look up T1 and T2
in parallel, finally obtaining the target entry in T1.

C. Rethinking Page Table Structure Design

While virtual memory is desirable in PIM systems, a follow-
up question is what address translation mechanism a multi-
stack PIM system should adopt. A radix PTW makes pointer-
chasing accesses across levels, and thus, cannot leverage the
high memory bandwidth of PIM. On the other hand, the
limited area in a vault cannot fit a large TLB to mitigate PTWs.
Even worse, different levels of the page table access can span
different PIM stacks. For example, Figure 3 demonstrates a
TLB miss in stack S0 that leads to accesses to multiple stacks
when walking through L4–L1. Such cross-stack accesses can
increase access latency and contention in the memory network.
In comparison, hash tables eliminate pointer-chasing accesses.
Especially with Cuckoo hashing, the parallel accesses not
only mitigate hash collisions but also exploit the memory
parallelism in PIM systems. Unfortunately, direct integration
of Cuckoo hashing into a PIM system leads to performance
degradation due to slower cross-stack accesses. Therefore,
there is a need to redesign the page table in PIM systems.

III. HIGH-LEVEL IDEAS

Our goal is to enable efficient address translation in scalable,
multi-stacked PIM systems. In this section, we discuss the
challenges in integrating the Cuckoo hash page table into such
a PIM system and present our key ideas.

A. Memory Network Overheads

Figure 4 demonstrates PTWs in a 2-ary Cuckoo-hash-based
page table in PIM. Upon a TLB miss in stack S0 (step 1⃝)
for virtual address VA1, the hash functions h1 and h2 direct
to two potential locations of this entry that are held by stacks
S11 and S5, leading to two parallel accesses to these stacks.

2

These parallel lookups reduce the PTW latency compared to
the radix page table that performs serialized lookups.

Challenge: Parallel lookups in cuckoo hash tables can
lead to contention in the network. We study the impact of
parallel page table lookups on cross-stack memory accesses.
We observe that the vault service time remains largely the same
but the network traversal time for a memory request increases
with more parallel accesses, as concurrently issued hash table
lookups contend with other memory accesses in the memory
network, leading to performance degradation.

Our Approach: Network-contention-aware hash: The
concurrent cross-stack PTWs are the primary source of the
overhead in a Cuckoo hash design. We observe that the
placement of hash table entries is determined by the hash
functions. If the hash functions map the output indexes to the
same stack, there needs only one cross-stack access during the
PTW, which can trigger multiple parallel page table accesses,
significantly reducing the number of cross-stack accesses.
Therefore, we propose a network-contention-aware hashing
scheme. Figure 5 shows a high-level view of our approach.
The core components of our approach are two types of hash
functions: The stack hash function, hS (S stands for stack),
generates an index that directs to a stack where other hash
table lookup operations will be performed. The vault hash
functions, hV’s (V stands for vault), generate the remaining
indexes to vaults within the same stack selected by hS (Details
of index generation in section IV-A2). Figure 6b demonstrates
the execution timeline in Figure 5. Figure 6a and 6b compare
a naive Cuckoo hash table with our network-contention-aware
scheme and show that our approach significantly reduces the
network traversal time of memory requests.

B. Cross-Stack PTW Overheads

Challenge: A system without PTW overhead is on aver-
age 1.4× faster than the system with our network-contention-
aware hashing scheme, leaving optimization opportunities on
the table. Ideally, one would like to have TLB misses identified
ahead of time, to overlap PTWs with program execution.

Our Approach: Pre-translation: A PIM system has many
low-profile cores, which as a whole, provide massive paral-
lelism. Thus, programs suitable for PIM offloading also feature
high parallelism and manifest as independent loops that can
be assigned to different cores and executed in parallel [2].
Given such an execution pattern, it is possible to execute future
work (i.e., the next parallelizable iteration) ahead of time,
making it possible to pre-translate cross-stack PTWs before
a future iteration happens. However, the area for processing
logic in memory stacks is limited, so the goal is to pre-
translate without extra logic. We found that, on average, the
work needed for a normal iteration is 4.22× compared to the
minimum code required to trigger TLB misses. This implies
that a few cores dedicated to pre-translation work can assist
multiple main cores. We also measured the execution time
with the number of main cores reduced from 512 to 480,
only leading to a 6% degradation. Therefore, we propose to
use a small fraction of PIM cores as pre-translation cores to

❶ PTW at S11
for TLB Miss #1

Hash Table
Vault 0

Vault Logic
Core 0

…Link 0

…

Vault Logic
Core n

Link 3

Inside Stack 11 (total 32 vaults)

S1
1

hS

 Lookup for: VA1

 S
11

T1

❶ TLB Miss #1 for VA1

VA1

 Lookup for: VA2

 T2

 VA7

S1
4

 VA0

 VA4

S1
1

T1

VA1

 VA7

S1
4

 VA0

 VA4 S
14

 T2

TLB Miss #2 for VA2➋

 S0 S3 S8

S1 S2 S9

S4 S7

 S5 S6

H
os

t
C

P
U

S14

S11

 S10

 S15

S12

Hash Table
Vault n

S13

Crossbar Switch

Hash Table
Vault 0

Vault Logic
Core 0

…Link 0

…

Vault Logic
Core n

Link 3

Inside Stack 14 (total 32 vaults)

Hash Table
Vault n

Crossbar Switch

➋PTW at S14
 for TLB Miss #2

…
… …

…

hV1 hS hV1

VA5

 VA3

 VA2

 VA4

…
…

 S
14

VA5

 VA3

 VA2

 VA4

…
…

 S
11

Fig. 5. Page table based on the network-contention-aware Cuckoo hash.

(a) Cuckoo hashing lookup in PIM system

V N

➋TLB Miss
Time

V N

V N

NV

❶TLB Miss

S-11

S-10
S-5

➋TLB Miss
Time

V N

V N

NV

S11

❶TLB Miss

NV
S14

S-14

cycles saved

(b) Lookup in PIM system with network-contention-aware hash

Lower network latency due
 to less network contention

(c) Hashing lookup in PIM system with network-contention-aware hash & pre-translation

PB
❸TLB Miss, PB Miss Time

NV

S0

❶
TLB Miss, PB Hit
Read from PB

NV
S14

More cycles saved

Other main cores
 Main core 1:
 …
 x = array1[i];
 …
 y = array2[j];

 Pre-translation core:
 //.. Other tasks

 Pre-translation core:
 x = array[i];

TLB miss, PB hit

PB

TLB miss, PB miss

Insert pre-translation
result to PB

➋
TLB Miss,
Write to PB

V- Vault Service Time N- Network Traversal Time Pre-Translation Buffer

PB

Fig. 6. An overview of pre-translation for cross-stack PTWs.

assist the main cores. Figure 6c shows a high-level view of
the pre-translation scheme. The pre-translation cores execute
simplified code of a future code section ahead of the progress
of main cores. In step 1⃝, the pre-translation core triggers
a TLB miss ahead of time and stores the translation result
to a pre-translation buffer (PB) which is located in the pre-
translation core’s local vault as shown in Figure 8. In step
2⃝, the main core, after encountering a TLB miss, access the
PB within the stack, to read the pre-translated result. Upon
another TLB miss in step 3⃝, the main core misses in the PB
as the pre-translation result is not available and falls back to the
normal cross-stack PTW. We can get significant performance
benefit by only reducing a fraction of the cross-stack PTWs.

IV. MECHANISM OF VPIM

In this section, we describe the mechanisms of VPIM and
demonstrate them with walk-through examples.

A. Network-Contention-Aware Hashing

We describe the page table allocation and the hashing
scheme that enable network-contention-aware hashing.

3

❶ TLB miss #1
for VA1

Hash Table
Vault 0

Vault Logic
Core 0

…Link 0

…

Vault Logic
Core n

Link 3

Inside Stack 11 (total 32 vaults)
 S0 S3 S8

S1 S2 S9

S4 S7

 S5 S6

H
os

t
C

P
U

S14

S11

 S10

 S15

S12

Hash Table
Vault n

S13 Crossbar Switch

Cache TLB PTW

Vault Controller

Switch

Core n

Vault

Hash Table
Vault 0

Vault Logic
Core 0

…Link 0

…

Vault Logic
Core n

Link 3

Inside Stack 0 (total 32 vaults)

Hash Table
Vault n

Crossbar Switch

hS

 VA1

❸ Locate the stack
corresponding to the
 index. (e.g., Stack 11

in this case)

Cache TLB PTW

Vault Controller

Switch

Core n

Vault

hV1

Hash VA1 with hS ❷

Hash
 VA1
with
hV1

 VA1

Make parallel accesses
 with both the indexes

❻

 Base
 Index
-S11

❹

❺

Add
output
 to base
 index

Fig. 7. Mechanism of the network contention-aware hashing scheme.

1) Allocation of Hash Page Table in VPIM: In the baseline
cuckoo hash table, allocation of the hash page table is done,
irrespective of the memory stack. Therefore, a PTW may
access the hash tables located on different memory stacks,
leading to increased contention in the memory network. To
mitigate the performance interference caused by the cross-
stack PTWs, VPIM allocates an equal fraction of the hash
page table to every stack. Each fraction belonging to a specific
stack has a fixed base index, Base Index (BI). This allocation
scheme enables directing all hash indexes of a virtual address
to the same stack. Next, we describe the hashing scheme.

2) Generation of Indexes: VPIM uses two types of hash
functions. The first type is the stack hash function, hS, which
generates indexes ranging from the first to the last entry in
the hash table. It indicates the index to the first hash table
(hS Index) and the target stack ID for remaining parallel
accesses. Specifically, hS takes the following steps:

hS Index = hS(VPN) = Mask(SHA1 (VPN), [0, n− 1]),

where n is the total number of entries andMask converts the
hash value (from SHA-1 algorithm) to a range between 0 and
n− 1. The stack ID is obtained from the mapping according
to the Base Indexes set during the page table allocation time.
The second type of hash function is the vault hash function,
hV. It generates an index to the same stack as hS but probably
different vaults inside that stack. In a Cuckoo hash scheme
with two parallel hash tables, i.e., 2-ary, there is one vault
hash hV1 that indexes to the second hash table. With more
hash tables, say n-ary, there will be n−1 value hash functions:
hV1 ... hV(n-1), each corresponding to one hash table. Back
to our assumed 2-ary system, hV1 takes the following steps:
hV1 Index =hV1 ((VPN)

= Mask(SHA1 (VPN), [0, (n/s)− 1]) + BI (StackID),

where n is the total number of hash entries and s is the number
of stacks. The final index from hV1 is the original hash value
converted to a range between 0 and (n/s)-1 using Mask , plus
the Base Index (BI) associated with the selected stack ID.

3) Example: Figure 7 shows a step-by-step example to
demonstrate our network-contention-aware hashing design.
Step 1⃝: execution in stack S0 encounters a TLB miss when
accessing VA1. Step 2⃝: in stack S0, the virtual address VA1

for(...){ // iteration u=X+1
 if(parent[u]<0){
 for(NodeID v:g.in_neigh(u)){
 if(front.get_bit(v)){

parent[u]=v;
break;}}}

}

 Main Core Pre-Translation Core Pre-Translation Buffer

Pre-Translation Core

Main Core

❶ Cross-Stack PTW

for(...){ // iteration u=X+1
 if(parent[u]<0){
 for(NodeID v:g.in_neigh(u)){
 if(front.get_bit(v)){

parent[u]=v;
awake_count++;
next.set_bit(u);
break;}}}

}

 Cross–Stack PTW

Hash Table

Vault 0

Vault Logic

Core 0

Hash Table

Vault 14

Vault Logic

Core 14

Hash Table

Vault 29

Vault Logic

Core 29

 ...

Hash Table
 Vault 30

Vault Logic

Core 30

Iterations: u=X~Y

PB
Hash Table

Vault 31

Vault Logic

Core 31

PB

u=X+1

u=X+1Iteration

Iteration

Insert
Pre-translated
PPN

Lookup
PPN

1:15 Ratio

mapped to a stack

PB

❷

❸
❹

 PPN: Physical Page Number

Fig. 8. The pre-translation mechanism.

set_main_threads(480);
vPIM_PARALLEL_MAIN_THREADS {
 for(i=0;i<t;i++){
 int k;
 float sum=0.0f;
 int bound=h_nzcnt[i];
 for(k=0;k<bound;k++){
 int j=h_ptr[k]+i;
 int in=h_indices[j];
 float d=h_data[j];
 float t=h_x_vector[in];
 sum+=d*t;
 }
 }
}

set_pre_translation_threads(32);
vPIM_PRE_TRANSLATION_THREADS {
 for(i=1;i<t;i++){
 int k;
 int bound=h_nzcnt[i];
 for(k=0;k<bound;k++){
 int j=h_ptr[k];
 int in=h_indices[j];
 }
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26

Fig. 9. Code filtering for the pre-translation cores.

is first hashed by hS. Step 3⃝: hS directs the translation to
vault 0 of stack S11. Step 4⃝: in stack 11, VA1 is further
hashed with the vault hash function hV1. Step 5⃝: the value
generated from hV1 is added to the emphBase Index for stack
S11, and generates an index for the second page table in stack
S11 (located in vault n of stack S11 in this example). Step
6⃝: the two hash indexes generated by hS and hV2 are then
accessed in parallel within stack S11. One of them returns the
final translation result (the other one can be a collision).

B. Pre-translation

This mechanism repurposes a small number of cores for pre-
translation in each stack, which runs ahead of the remaining
main cores within the stack. The pre-translation results are
stored in a pre-translation buffer (PB), which cache the virtual-
physical address mappings and is located in the pre-translation
core’s vault as shown in Figure 8.

1) Programming Interface: Threads for the main
computation work are referred to as main threads and
those for pre-translation as pre-translation threads. Figure
9 demonstrates an example that uses the vPIM library
to define main threads and pre-translation threads.
First, functions set_main_threads (line 1) and
set_pre_translation_threads (line 16) define
the number of cores allocated to main threads and
pre-translation threads, respectively. Code wrapped by
vPIM_PARALLEL_MAIN_THREADS is for main threads,
which are automatically generated from loops (line 3). This
approach is derived from the OpenMP wrapper [18]. The
VPIM library pins these main threads to the main cores
using Linux’s scheduler affinity interface. Likewise, code
wrapped by vPIM_PRE_TRANSLATION_THREADS is

4

0.0
0.2
0.4
0.6
0.8
1.0

bfs.
tw

itte
r

tc.
tw

itte
r

cc.
tw

itte
r

cc_
sv.

tw
itte

r

sss
p.tw

itte
r

bfs.
fri

en
dste

r

tc.
fri

en
dste

r

cc.
fri

en
dste

r

cc_
sv.

fri
en

dste
r

sss
p.fr

ien
dste

r
spmv

sge
mm

ste
ncil

mri-
gri

d
mri-

q
hist

o
tpacf

cu
tcp lbm

pr.t
witte

r

pr.f
rn

dSl
ow

do
w

n
R

el
at

iv
e t

o
Id

ea
l

A
dd

re
ss

 T
ra

ns
la

tio
n

Radix Page Table Cuckoo Hash Page Table
vPIM: Network-Contention Aware Hash vPIM: Network-Contention Aware Hash + Pre-Translation

Memory Intensive Non-Memory Intensive

N/A N/AN/A N/A N/A N/A N/AN/A

Fig. 10. Performance of vPIM over the baselines.

0.0
0.2
0.4
0.6
0.8
1.0

vPIM Baseline Cuckoo
HashSl

ow
do

w
n

R
el

at
iv

e t
o

Id
ea

l
A

dd
re

ss
 T

ra
ns

la
tio

n 2 4 8Num Parallel Accesses:

Fig. 11. Performance with varying parallel
accesses to hash table.

for pre-translation threads which are also generated from
loops. However, the VPIM library, assigns the loop iterations
to these threads in a way that each pre-translation thread
encounters the future iterations for all its associated main
threads in a round-robin manner. We take an approach similar
to past works on helper threads for prefetching [11], to
minimize our code. Instructions that access smaller data
structures (less likely to trigger TLB misses), non-memory
instructions, and instructions that change the memory state,
are all removed.

2) Coarse-Grained Synchronization between Main and
Pre-Translation Cores: Pre-translation cores assist a spe-
cific set of main cores within a stack. Thus, they have
to ensure that they remain ahead of those cores in or-
der to trigger useful PTWs for future use. The par-
allelization wrappers, vPIM_PARALLEL_MAIN_THREADS,
and vPIM_PRE_TRANSLATION_THREADS take the loop
variable, e.g., i in Figure 9, to track the progress. Since the
pre-translation core starts the execution an iteration ahead of
the main cores, VPIM library checks if at least the distance
(i.e., +1) is maintained between the main and pre-translation
threads after the completion of a set of iterations (This ensures
coarse-grained synchronization to minimize synchronization
overhead). If the checking fails, the VPIM library moves the
pre-translation thread ahead of the main threads, i.e., increment
the distance to be +1 of the main thread.

3) Walk-Through Example of Pre-Translation: Figure 8
shows a walk-through example of pre-translation. Step 1⃝: pre-
translation core in a stack executes iteration X+1 and triggers
a TLB miss, resulting in a PTW. Step 2⃝: it performs the PTW
and buffers the translation in its pre-translation buffer (PB).
Step 3⃝: the main core starts iteration X+1 later and encounters
a TLB miss when accessing the same address. Step 4⃝: the
main core looks up the PB in the same stack before performing
a PTW, and hits PB. Thus, it no longer needs a PTW.

V. EVALUATION METHODOLOGY

A. System Configuration and Design Points

We model our PIM cores in ZSim [24], memory system
in Ramulator, [13] and memory network in BookSim2 [10].
Table I lists our system configuration. In VPIM, the only
additional structure are the two PBs per stack (each has 1024
entries or 16kB), associated with the two pre-translation cores.

TABLE I
SIMULATED SYSTEM CONFIGURATION.

PIM Cores
Processor 512 in-order cores; 1/vault, 1-issue, 2GHz
L1 Cache 16 kB I/D, 4-way, 64 B cache line, LRU
I&D TLB 64 entries, LRU (per core)
Page Table Walker 1 (per core)

Memory
Number of Stacks 16
Capacity per Stack 4 GB, 4 layers, 8 banks per vault
Vaults per Stack 32, 32 TSV per vault
Maximum Bandwidth 10GB/s per Vault, 120GB/s per Link

We compare the performance of four designs: (1) a conven-
tional Radix page table, (2) a Cuckoo hash page table without
optimizations for PIM, (3) a Cuckoo hash with our network-
contention-aware hashing from VPIM (4) a Cuckoo hash with
network-contention-aware hashing and pre-translation from
VPIM. Baseline Cuckoo hash and VPIM use 2-ary hash tables.

B. Workloads

We evaluate the workloads from Gapbs [5] and Parboil [26]
benchmark suites. The Gapbs workloads take two real-world
input graphs: Friendster [22] and Twitter [14]; the parboil
workloads take the largest dataset in the benchmark suite.
These workloads fall into two categories: memory-intensive
and non-memory-intensive. We follow the evaluation strategy
of prior works [23, 25], by performing evaluation of VPIM
on both categories and then performing sensitivity studies on
memory-intensive workloads only. The simulation starts from
a warm-up stage, and then enters a region-of-interest of a total
of 500 M instructions that perform the core tasks on PIM.

VI. EVALUATION RESULTS

A. Overall Performance and Performance Breakdown

Figure 10 compares the slowdown due to address translation
of our design points over an ideal system without address
translation overhead. Overall, VPIM, with both network-
contention-aware hashing and pre-translation, has a speedup of
3.18× and 1.44× over the radix and Cuckoo hash page tables.
For memory-intensive workloads, the speedup is 4.4× and
1.7×respectively. Pre-translation reduces the number of main
cores and thus, only workloads consuming more than 20% of
execution time on address translation (through profiling) will
enable the pre-translation cores. Thus, non-memory intensive
workloads do not enable pre-translation (N/A in Figure 10).

5

0.0
0.2
0.4
0.6
0.8
1.0

AverageSl
ow

do
w

n
R

el
at

iv
e t

o
Id

ea
l A

dd
re

ss
 T

ra
ns

la
tio

n
2 4

Pre-Translation
Cores :

Fig. 12. Performance with varied
pre-translation cores per stack.

0.0
0.2
0.4
0.6
0.8
1.0

AverageSl
ow

do
w

n
R

el
at

iv
e t

o
Id

ea
l A

dd
re

ss
 T

ra
ns

la
tio

n 5k 10k
15k 20k
vPIM

TLB
Entries:

Fig. 13. Performance comparison
with in-memory TLB.

Figure 10 further shows the speedup from each optimiza-
tion in VPIM. We observe in Figure 10 that the network-
contention-aware hashing outperforms both baselines and the
performance trend from pre-translation falls into three cate-
gories. (1) Workloads with significant performance improve-
ment, e.g., spmv, sgemm, and bfs, where pre-translation cores
run fast enough to pre-translate a large number of iterations
for the main cores. (2) Workloads with limited margin to
improve, e.g., tc, cc sv, and stencil, that already achieve close-
to-ideal performance, with network-contention-aware hashing.
(3) Workloads with limited improvement, e.g., cc and sssp, that
have limited room to be simplified for pre-translation cores,
resulting in long execution time for pre-translation.

B. Sensitivity Study-Parallel Access and Pre-Translation Core

Figure 11 shows that more parallel accesses degrade perfor-
mance in the Cuckoo hash page table, due to increased network
contention. In comparison, because of the contention aware-
ness, VPIM does not have major performance degradation
with more parallel hash table accesses. Figure 12 shows the
average performance with varying numbers of pre-translation
cores per stack. The benefit is a result of a trade-off between
the address translation overhead and the reduced performance
due to fewer cores for the workload. For our workloads, we
see the best performance with two pre-translation cores.

C. Comparison with in-Memory TLB

Figure 13 compares VPIM with an in-memory TLB [23] (5
k to 20 k entries). We observe that VPIM performs signifi-
cantly better since memory-intensive workloads do not have a
good locality and incur frequent TLB misses. In-memory TLB
design aims to reduce the TLB miss rate, which is orthogonal
to VPIM’s goal of reducing the TLB miss penalty. Thus, the
two designs can work collaboratively for better performance.

VII. RELATED WORK

To reduce the overhead of address translation, prior works
have proposed to optimize the TLB organizations by prefetch-
ing [12], large part-of-memory TLB [23], and speculative
TLBs [4]. However, as PIM systems have a limited area for
computation logic, these complicated hardware designs do not
apply. Thus, this work takes an approach that reduces the TLB
miss penalty. There have also been proposals on hash page
tables [25] that reduce the PTW latency. However, they are
designed for conventional, CPU-centric systems whereas this
work targets scalable, multi-stack PIM systems.

VIII. CONCLUSIONS

We propose VPIM that optimizes address translation in
(PIM) systems by introducing a network-contention-aware
hashing scheme that efficiently integrates hash-table-based
address translation in PIM. Moreover, VPIM repurposes some
PIM cores for pre-translation to move page table walks off the
critical path of execution. Our evaluation, done using ZSim,
shows a speedup of 4.4× and 1.7× compared to the radix and
cuckoo hash page table, in eight memory-intensive workloads.

IX. ACKNOWLEDGEMENT

We thank the anonymous reviewers for their valuable feed-
back. This work is supported by the SRC/DARPA Center
for Research on Intelligent Storage and Processing-in-memory
(CRISP), National Science Foundation (NSF), and Thailand
MHESI Research Grant for New Scholars (RGNS 64-091).

REFERENCES

[1] R. Agarwal et al., “The intel 80386 architecture and implementation,”
IEEE Micro, 1985.

[2] J. Ahn et al., “PIM-Enabled Instructions: A low-overhead, locality-aware
processing-in-memory architecture,” in ISCA, 2015.

[3] ——, “A scalable processing-in-memory accelerator for parallel graph
processing,” in ISCA, 2015.

[4] T. W. Barr et al., “Spectlb: A mechanism for speculative address
translation,” SIGARCH Comput. Archit. News, 2011.

[5] S. Beamer et al., “The GAP benchmark suite,” arXiv, 2015.
[6] M. Gao et al., “Practical near-data processing for in-memory analytics

frameworks,” in PACT, 2015.
[7] P. Gu et al., “ipim: Programmable in-memory image processing accel-

erator using near-bank architecture,” in ISCA, 2020, pp. 804–817.
[8] J. Huck et al., “Architectural support for translation table management

in large address space machines,” in ISCA, 1993.
[9] JEDEC, “High Bandwidth Memory (HBM) DRAM,” Standard No.

JESD235, 2013.
[10] N. Jiang et al., “A detailed and flexible cycle-accurate network-on-chip

simulator,” ISPASS, pp. 86–96, 2013.
[11] M. Kamruzzaman et al., “Inter-core prefetching for multicore processors

using migrating helper threads,” in ASPLOS, 2011.
[12] G. Kandiraju et al., “Going the distance for TLB prefetching: An

application-driven study,” in ISCA, 2002, pp. 195–206.
[13] Y. Kim et al., “Ramulator: A fast and extensible dram simulator,” CAL,

2016.
[14] H. Kwak et al., “What is Twitter, a social network or a news media?”

in WWW, 2010.
[15] J. Lowe-Power et al., “Supporting x86-64 address translation for 100s

of GPU lanes,” in HPCA, 2014.
[16] Z. S. H. Michael J. K. Nielsen, “Unified memory computer architecture

with dynamic graphics memory allocation,” U.S. Patent 6,104,417, Aug.
15 2000.

[17] T. Nowatzki et al., “Stream-dataflow acceleration,” in ISCA, 2017.
[18] OpenMP, “The OpenMP API specification for parallel programming,”

https://www.openmp.org/, 2022.
[19] M. Oskin et al., “Active pages: A computation model for intelligent

memory,” in ISCA, 1998.
[20] R. Pagh et al., “Cuckoo hashing,” Journal of Algorithms, 2004.
[21] J. Picorel et al., “Near-memory address translation,” in PACT, 2017.
[22] R. A. Rossi et al., “The network data repository with interactive

graph analytics and visualization,” in AAAI, 2015. [Online]. Available:
https://networkrepository.com

[23] J. H. Ryoo et al., “Rethinking tlb designs in virtualized environments:
A very large part-of-memory tlb,” in ISCA, 2017.

[24] D. Sanchez et al., “ZSim: Fast and accurate microarchitectural simula-
tion of thousand-core systems,” in ISCA, 2013.

[25] D. Skarlatos et al., “Elastic cuckoo page tables: Rethinking virtual
memory translation for parallelism,” in ASPLOS, 2020.

[26] J. Stratton et al., “Parboil: A revised benchmark suite for scientific
and commercial throughput computing,” Center for Reliable and High-
Performance Computing, 2012.

6

https://www.openmp.org/
https://networkrepository.com

	Introduction
	Background and Motivation
	Processing-in-Memory (PIM) Architecture
	Virtual Memory
	Rethinking Page Table Structure Design

	High-Level Ideas
	Memory Network Overheads
	Cross-Stack PTW Overheads

	Mechanism of vPIM
	Network-Contention-Aware Hashing
	Allocation of Hash Page Table in vPIM
	Generation of Indexes
	Example

	Pre-translation
	Programming Interface
	Coarse-Grained Synchronization between Main and Pre-Translation Cores
	Walk-Through Example of Pre-Translation

	Evaluation Methodology
	System Configuration and Design Points
	Workloads

	Evaluation Results
	Overall Performance and Performance Breakdown
	Sensitivity Study-Parallel Access and Pre-Translation Core
	Comparison with in-Memory TLB

	Related Work
	Conclusions
	Acknowledgement
	References

