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Executive Summary 

 Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 
 

 Problem: Existing monolithic application-aware memory 

scheduler designs are hard to scale to large request buffer sizes 
 

 Solution: Staged Memory Scheduling (SMS)  

decomposes the memory controller into three simple stages: 

1) Batch formation: maintains row buffer locality 

2) Batch scheduler: reduces interference between applications 

3) DRAM command scheduler: issues requests to DRAM 
 

 Compared to state-of-the-art memory schedulers: 

 SMS is significantly simpler and more scalable 

 SMS provides higher performance and fairness 
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 All cores contend for limited off-chip bandwidth 

 Inter-application interference degrades system performance 

 The memory scheduler can help mitigate the problem 

 How does the memory scheduler deliver good performance 
and fairness? 

Main Memory is a Bottleneck 
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Three Principles of Memory Scheduling 
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 Prioritize row-buffer-hit requests [Rixner+, ISCA’00] 

 To maximize memory bandwidth 

 

 Prioritize latency-sensitive applications [Kim+, HPCA’10] 

 To maximize system throughput 
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 Prioritize row-buffer-hit requests [Rixner+, ISCA’00] 

 To maximize memory bandwidth 

 

 Prioritize latency-sensitive applications [Kim+, HPCA’10] 

 To maximize system throughput 

 

 Ensure that no application is starved [Mutlu and Moscibroda, 

MICRO’07] 

 To minimize unfairness 

 

 

Three Principles of Memory Scheduling 
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Memory Scheduling for CPU-GPU Systems 

 Current and future systems integrate a GPU along with 
multiple cores 

 

 GPU shares the main memory with the CPU cores 

 

 GPU is much more (4x-20x) memory-intensive than CPU 

 

 How should memory scheduling be done when GPU is 
integrated on-chip? 
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Introducing the GPU into the System 
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 GPU occupies a significant portion of the request buffers 

 Limits the MC’s visibility of the CPU applications’ differing 
memory behavior  can lead to a poor scheduling decision 

Introducing the GPU into the System 
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Naïve Solution: Large Monolithic Buffer 
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Problems with Large Monolithic Buffer 
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 A large buffer requires more complicated logic to: 

 Analyze memory requests (e.g., determine row buffer hits) 

 Analyze application characteristics 

 Assign and enforce priorities  

 This leads to high complexity, high power, large die area 

Problems with Large Monolithic Buffer 
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More Complex Memory Scheduler 
 
 



 Design a new memory scheduler that is: 

 Scalable to accommodate a large number of requests 

 Easy to implement 

 Application-aware 

 Able to provide high performance and fairness, especially in 
heterogeneous CPU-GPU systems 

 

 

Our Goal 
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Key Functions of a Memory Controller 

 Memory controller must consider three different things 
concurrently when choosing the next request: 

 

1) Maximize row buffer hits 

 Maximize memory bandwidth 

2) Manage contention between applications 

 Maximize system throughput and fairness 

3) Satisfy DRAM timing constraints 

 

 Current systems use a centralized memory controller 
design to accomplish these functions  

 Complex, especially with large request buffers 
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Key Idea: Decouple Tasks into Stages 

 Idea: Decouple the functional tasks of the memory controller 

 Partition tasks across several simpler HW structures (stages) 
 

1) Maximize row buffer hits 

 Stage 1: Batch formation  

 Within each application, groups requests to the same row into 
batches 

2) Manage contention between applications 

 Stage 2: Batch scheduler  

 Schedules batches from different applications 

3) Satisfy DRAM timing constraints 

 Stage 3: DRAM command scheduler 

 Issues requests from the already-scheduled order to each bank 
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SMS: Staged Memory Scheduling 
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SMS: Staged Memory Scheduling 
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Stage 1: Batch Formation 

 Goal: Maximize row buffer hits 

 

 At each core, we want to batch requests that access the 
same row within a limited time window 

 

 A batch is ready to be scheduled under two conditions 

1) When the next request accesses a different row  

2) When the time window for batch formation expires 

 

 Keep this stage simple by using per-core FIFOs 
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Stage 1: Batch Formation Example 
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Stage 1: Batch Formation Example 
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Core 1 Core 2 Core 3 Core 4 

Stage 1: Batch Formation Example 
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Core 1 Core 2 Core 3 Core 4 

Stage 1: Batch Formation Example 
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SMS: Staged Memory Scheduling 
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Stage 2: Batch Scheduler 

 Goal: Minimize interference between applications 

 

 Stage 1 forms batches within each application 

 Stage 2 schedules batches from different applications 

 Schedules the oldest batch from each application 

 

 Question: Which application’s batch should be scheduled 
next? 

 Goal: Maximize system performance and fairness 

 To achieve this goal, the batch scheduler chooses between 
two different policies 
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Stage 2: Two Batch Scheduling Algorithms 

 Shortest Job First (SJF) 

 Prioritize the applications with the fewest outstanding memory 
requests because they make fast forward progress 

 Pro: Good system performance and fairness 

 Con: GPU and memory-intensive applications get deprioritized 

 

 

 Round-Robin (RR) 

 Prioritize the applications in a round-robin manner to ensure 
that memory-intensive applications can make progress 

 Pro: GPU and memory-intensive applications are treated fairly 

 Con: GPU and memory-intensive applications significantly 
slow down others 
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Stage 2: Batch Scheduling Policy 

 The importance of the GPU varies between systems and 
over time  Scheduling policy needs to adapt to this 

 

 Solution: Hybrid Policy 

 At every cycle: 

 With probability p : Shortest Job First  Benefits the CPU 

 With probability 1-p : Round-Robin  Benefits the GPU 

 

 System software can configure p based on the 
importance/weight of the GPU 

 Higher GPU importance  Lower p value 
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SMS: Staged Memory Scheduling 
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Stage 3: DRAM Command Scheduler 

 High level policy decisions have already been made by: 

 Stage 1: Maintains row buffer locality 

 Stage 2: Minimizes inter-application interference 

 

 Stage 3: No need for further scheduling 

 Only goal: service requests while satisfying DRAM 
timing constraints 

 

 Implemented as simple per-bank FIFO queues 
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Complexity 

 Compared to a row hit first scheduler, SMS consumes* 

 66% less area 

 46% less static power 

 

 

 Reduction comes from: 

 Monolithic scheduler  stages of simpler schedulers 

 Each stage has a simpler scheduler (considers fewer 
properties at a time to make the scheduling decision) 

 Each stage has simpler buffers (FIFO instead of out-of-order) 

 Each stage has a portion of the total buffer size (buffering is 
distributed across stages) 

55 * Based on a Verilog model using 180nm library 
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Methodology 

 Simulation parameters 

 16 OoO CPU cores, 1 GPU modeling AMD Radeon™ 5870 

 DDR3-1600 DRAM 4 channels, 1 rank/channel, 8 banks/channel 

 

 Workloads 

 CPU: SPEC CPU 2006 

 GPU: Recent games and GPU benchmarks 

 7 workload categories based on the memory-intensity of CPU 
applications 

 Low memory-intensity (L) 

 Medium memory-intensity (M)  

 High memory-intensity (H) 
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Comparison to Previous Scheduling Algorithms 

 FR-FCFS [Rixner+, ISCA’00] 

 Prioritizes row buffer hits 

 Maximizes DRAM throughput 

 Low multi-core performance  Application unaware 
 

 ATLAS [Kim+, HPCA’10] 

 Prioritizes latency-sensitive applications 

 Good multi-core performance 

 Low fairness  Deprioritizes memory-intensive applications 
 

 TCM [Kim+, MICRO’10] 

 Clusters low and high-intensity applications and treats each 
separately 

 Good multi-core performance and fairness 

 Not robust  Misclassifies latency-sensitive applications 
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Evaluation Metrics 

 CPU performance metric: Weighted speedup 

 

 

 

 GPU performance metric: Frame rate speedup 

 

 

 
 

 CPU-GPU system performance: CPU-GPU weighted speedup 
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 CPU performance metric: Weighted speedup 

 

 

 

 GPU performance metric: Frame rate speedup 

 

 

 
 

 CPU-GPU system performance: CPU-GPU weighted speedup 
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Evaluated System Scenarios 

 CPU-focused system 

 

 GPU-focused system 
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Evaluated System Scenario: CPU Focused 

 GPU has low weight (weight = 1) 

 

 

 

 

 

 Configure SMS such that p, SJF probability, is set to 0.9 

 Mostly uses SJF batch scheduling  prioritizes latency-

sensitive applications (mainly CPU) 
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Evaluated System Scenario: CPU Focused 
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 Configure SMS such that p, SJF probability, is set to 0.9 

 Mostly uses SJF batch scheduling  prioritizes latency-

sensitive applications (mainly CPU) 
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Evaluated System Scenario: GPU Focused 

 GPU has high weight (weight = 1000) 

 

 

 

 

 

 Configure SMS such that p, SJF probability, is set to 0 

 Always uses round-robin batch scheduling  prioritizes 

memory-intensive applications (GPU) 
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Evaluated System Scenario: GPU Focused 

 GPU has high weight (weight = 1000) 

 

 

 

 

 

 Configure SMS such that p, SJF probability, is set to 0 

 Always uses round-robin batch scheduling  prioritizes 

memory-intensive applications (GPU) 
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Evaluated System Scenario: GPU Focused 

 GPU has high weight (weight = 1000) 

 

 

 

 

 

 Configure SMS such that p, SJF probability, is set to 0 
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 Round-robin batch scheduling policy schedules GPU 
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Performance at Different GPU Weights 
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Performance at Different GPU Weights 
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 At every GPU weight, SMS outperforms the best previous 
scheduling algorithm for that weight 

Performance at Different GPU Weights 
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Additional Results in the Paper 

 Fairness evaluation 

 47.6% improvement over the best previous algorithms 
 

 Individual CPU and GPU performance breakdowns 
 

 CPU-only scenarios 

 Competitive performance with previous algorithms 
 

 Scalability results 

 SMS’ performance and fairness scales better than previous 
algorithms as the number of cores and memory channels 
increases 

 

 Analysis of SMS design parameters 
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Conclusion 

 Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 
 

 Problem: Existing monolithic application-aware memory 

scheduler designs are hard to scale to large request buffer size 
 

 Solution: Staged Memory Scheduling (SMS)  

decomposes the memory controller into three simple stages: 

1) Batch formation: maintains row buffer locality 

2) Batch scheduler: reduces interference between applications 

3) DRAM command scheduler: issues requests to DRAM 
 

 Compared to state-of-the-art memory schedulers: 

 SMS is significantly simpler and more scalable 

 SMS provides higher performance and fairness 
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Row Buffer Locality on Batch Formation 

 OoO batch formation improves the performance of the 
system by: 

 ~3% when the batch scheduler uses SJF policy most of the 
time 

 ~7% when the batch scheduler uses RR most of the time 

 

 However, OoO batch formation is more complex 

 OoO buffering instead of FIFO queues 

 Need to fine tune the time window of the batch formation 
based on application characteristics (only 3%-5% performance 
gain without fine tuning)  
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Row Buffer Locality on Batch Formation 
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Key Differences Between CPU and GPU 
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MLP and RBL 

 Key differences between a CPU application and a GPU 
application 
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Dealing with Multi-Threaded Applications 

 Batch formation: Groups requests from each application in 
a per-thread FIFO 

 

 Batch scheduler: Detects critical threads and prioritizes 
them over non-critical threads 

 Previous works have shown how to detect and schedule 
critical threads 

1) Bottleneck Identification and Scheduling in MT applications 
[Joao+, ASPLOS’12] 

2) Parallel Application Memory Scheduling  

 [Ebrahimi, MICRO’11] 

 

 DRAM command scheduler: Stays the same 
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Dealing with Prefetch Requests  

 Previous works have proposed several solutions: 

 Prefetch-Aware Shared-Resource Management for Multi-Core 
Systems [Ebrahimi+, ISCA’11] 

 Coordinated Control of Multiple Prefetchers in Multi-Core 
Systems [Ebrahimi+, MICRO’09] 

 Prefetch-aware DRAM Controller [Lee+, MICRO’08] 

 

 Handling Prefetch Requests in SMS: 

 SMS can handle prefetch requests before they enter the 
memory controller (e.g., source throttling based on prefetch 
accuracy) 

 SMS can handle prefetch requests by prioritizing/deprioritizing 
prefetch batch at the batch scheduler (based on prefetch 
accuracy) 
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Fairness Evaluation 
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Unfairness (Lower is better) 



Performance at Different Buffer Sizes 
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CPU and GPU Performance Breakdowns 
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CPU-Only Results 
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Scalability to Number of Cores 
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Scalability to Number of Memory Controllers 
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Detailed Simulation Methodology 

Number of cores 16 GPU Max throughput 1600 
ops/cycle 

Number of GPU 1 GPU Texture/Z/Color 
units 

80/128/32 

CPU reorder buffers 128 entries DRAM Bus 64 
bits/channel 

L1 (private) cache size 32KB,  
4 ways 

DRAM row buffer size 2KB 

L2 (shared) cache size 8MB,  
16 ways 

MC Request buffer 
size 

300 entries 

ROB Size 128 entries 
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Analysis to Different SMS Parameters 
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Global Bypass 

 What if the system is lightly loaded? 

 Batching will increase the latency of requests 

 

 Global Bypass 

 Disable the batch formation when the number of total 
requests is lower than a threshold 
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