
Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian,

Gabriel H. Loh*, Onur Mutlu

Carnegie Mellon University, *AMD Research

June 12th 2012

Executive Summary

 Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

 Problem: Existing monolithic application-aware memory

scheduler designs are hard to scale to large request buffer sizes

 Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:

1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications

3) DRAM command scheduler: issues requests to DRAM

 Compared to state-of-the-art memory schedulers:

 SMS is significantly simpler and more scalable

 SMS provides higher performance and fairness

 2

Outline

 Background

 Motivation

 Our Goal

 Observations

 Staged Memory Scheduling

1) Batch Formation

2) Batch Scheduler

3) DRAM Command Scheduler

 Results

 Conclusion

3

Main Memory is a Bottleneck

4

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

M
e
m

o
ry

 R
e
q
u
e
st

 B
u
ff
e
r

 All cores contend for limited off-chip bandwidth

 Inter-application interference degrades system performance

 The memory scheduler can help mitigate the problem

 How does the memory scheduler deliver good performance
and fairness?

Main Memory is a Bottleneck

5

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

M
e
m

o
ry

 R
e
q
u
e
st

 B
u
ff
e
r

Req Req Req Req Req Req

Req

Req Req

Three Principles of Memory Scheduling

6

Currently open row

B

 Prioritize row-buffer-hit requests [Rixner+, ISCA’00]

 To maximize memory bandwidth

Three Principles of Memory Scheduling

7

Currently open row

B

 Prioritize row-buffer-hit requests [Rixner+, ISCA’00]

 To maximize memory bandwidth

Three Principles of Memory Scheduling

8

Req 1 Row A

Req 2 Row B

Req 3 Row C

Req 4 Row A

Req 5 Row B

Currently open row

B

 Prioritize row-buffer-hit requests [Rixner+, ISCA’00]

 To maximize memory bandwidth

Three Principles of Memory Scheduling

9

Req 1 Row A

Req 2 Row B

Req 3 Row C

Req 4 Row A

Req 5 Row B

Older

Newer

Currently open row

B

 Prioritize row-buffer-hit requests [Rixner+, ISCA’00]

 To maximize memory bandwidth

Three Principles of Memory Scheduling

10

Req 1 Row A

Req 2 Row B

Req 3 Row C

Req 4 Row A

Req 5 Row B

Older

Newer

 Prioritize row-buffer-hit requests [Rixner+, ISCA’00]

 To maximize memory bandwidth

 Prioritize latency-sensitive applications [Kim+, HPCA’10]

 To maximize system throughput

Three Principles of Memory Scheduling

11

Application Memory Intensity (MPKI)

1 5

2 1

3 2

4 10

 Prioritize row-buffer-hit requests [Rixner+, ISCA’00]

 To maximize memory bandwidth

 Prioritize latency-sensitive applications [Kim+, HPCA’10]

 To maximize system throughput

Three Principles of Memory Scheduling

12

Application Memory Intensity (MPKI)

1 5

2 1

3 2

4 10

 Prioritize row-buffer-hit requests [Rixner+, ISCA’00]

 To maximize memory bandwidth

 Prioritize latency-sensitive applications [Kim+, HPCA’10]

 To maximize system throughput

 Ensure that no application is starved [Mutlu and Moscibroda,

MICRO’07]

 To minimize unfairness

Three Principles of Memory Scheduling

13

Outline

 Background

 Motivation: CPU-GPU Systems

 Our Goal

 Observations

 Staged Memory Scheduling

1) Batch Formation

2) Batch Scheduler

3) DRAM Command Scheduler

 Results

 Conclusion

14

Memory Scheduling for CPU-GPU Systems

 Current and future systems integrate a GPU along with
multiple cores

 GPU shares the main memory with the CPU cores

 GPU is much more (4x-20x) memory-intensive than CPU

 How should memory scheduling be done when GPU is
integrated on-chip?

15

Introducing the GPU into the System

16

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

Introducing the GPU into the System

17

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

 GPU occupies a significant portion of the request buffers

 Limits the MC’s visibility of the CPU applications’ differing
memory behavior  can lead to a poor scheduling decision

Introducing the GPU into the System

18

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

Req Req

GPU

Req Req Req Req Req Req Req

Req Req Req Req Req Req Req

Req Req Req Req Req Req Req

Req

Req

Naïve Solution: Large Monolithic Buffer

19

Memory Scheduler

To DRAM

Core 1 Core 2 Core 3 Core 4 GPU

Problems with Large Monolithic Buffer

20

Memory Scheduler

Req

Req

Req

Req

Req

Req Req

Req Req Req

Req

Req

Req

Req Req

Req Req

Req Req Req

Req

Req Req

Req

Req

Req

Req

Req

Req Req

Req

Req

Req

Req

Req Req Req Req

Req Req

Req Req

 A large buffer requires more complicated logic to:

 Analyze memory requests (e.g., determine row buffer hits)

 Analyze application characteristics

 Assign and enforce priorities

 This leads to high complexity, high power, large die area

Problems with Large Monolithic Buffer

21

Memory Scheduler

Req

Req

Req

Req

Req

Req Req

Req Req Req

Req

Req

Req

Req Req

Req Req

Req Req Req

Req

Req Req

Req

Req

Req

Req

Req

Req Req

Req

Req

Req

Req

Req Req Req Req

Req Req

Req Req

Problems with Large Monolithic Buffer

22

Memory Scheduler

Req

Req

Req

Req

Req

Req Req

Req Req Req

Req

Req

Req

Req Req

Req Req

Req Req Req

Req

Req Req

Req

Req

Req

Req

Req

Req Req

Req

Req

Req

Req

Req Req Req Req

Req Req

Req Req

More Complex Memory Scheduler

 Design a new memory scheduler that is:

 Scalable to accommodate a large number of requests

 Easy to implement

 Application-aware

 Able to provide high performance and fairness, especially in
heterogeneous CPU-GPU systems

Our Goal

23

Outline

 Background

 Motivation: CPU-GPU Systems

 Our Goal

 Observations

 Staged Memory Scheduling

1) Batch Formation

2) Batch Scheduler

3) DRAM Command Scheduler

 Results

 Conclusion

24

Key Functions of a Memory Controller

 Memory controller must consider three different things
concurrently when choosing the next request:

1) Maximize row buffer hits

 Maximize memory bandwidth

2) Manage contention between applications

 Maximize system throughput and fairness

3) Satisfy DRAM timing constraints

 Current systems use a centralized memory controller
design to accomplish these functions

 Complex, especially with large request buffers

25

Key Idea: Decouple Tasks into Stages

 Idea: Decouple the functional tasks of the memory controller

 Partition tasks across several simpler HW structures (stages)

1) Maximize row buffer hits

 Stage 1: Batch formation

 Within each application, groups requests to the same row into
batches

2) Manage contention between applications

 Stage 2: Batch scheduler

 Schedules batches from different applications

3) Satisfy DRAM timing constraints

 Stage 3: DRAM command scheduler

 Issues requests from the already-scheduled order to each bank

26

Outline

 Background

 Motivation: CPU-GPU Systems

 Our Goal

 Observations

 Staged Memory Scheduling

1) Batch Formation

2) Batch Scheduler

3) DRAM Command Scheduler

 Results

 Conclusion

27

SMS: Staged Memory Scheduling

28

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req

Req

Req

Req

Req

Req Req

Req Req Req

Req Req Req

Req Req

Req Req

Req Req Req

Req

Req Req

Req

Req

Req

Req

Req Req

Req Req Req

Req Req Req Req Req Req

Req

Req

Req Req

Req

M
o
n
o
lit

h
ic

 S
ch

e
d
u
le

r

SMS: Staged Memory Scheduling

29

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req Req Req Req Req Batch Scheduler

Stage 1

Stage 2

Stage 3

Batch
Formation

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Stage 1

Stage 2

SMS: Staged Memory Scheduling

30

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req Req Batch Scheduler

Batch
Formation

Stage 3

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Stage 1: Batch Formation

 Goal: Maximize row buffer hits

 At each core, we want to batch requests that access the
same row within a limited time window

 A batch is ready to be scheduled under two conditions

1) When the next request accesses a different row

2) When the time window for batch formation expires

 Keep this stage simple by using per-core FIFOs

31

Core 1 Core 2 Core 3 Core 4

Stage 1: Batch Formation Example

32

To Stage 2 (Batch Scheduling)

Stage 1

Batch
Formation

Core 1 Core 2 Core 3 Core 4

Stage 1: Batch Formation Example

33

Row A Row B

To Stage 2 (Batch Scheduling)

Stage 1

Batch
Formation

Core 1 Core 2 Core 3 Core 4

Stage 1: Batch Formation Example

34

Row A Row B

Row B

To Stage 2 (Batch Scheduling)

Stage 1

Batch
Formation

Core 1 Core 2 Core 3 Core 4

Stage 1: Batch Formation Example

35

Row A Row B

Row B

Row C

To Stage 2 (Batch Scheduling)

Stage 1

Batch
Formation

Core 1 Core 2 Core 3 Core 4

Stage 1: Batch Formation Example

36

Row C

To Stage 2 (Batch Scheduling)

Next request goes to a different row Stage 1

Batch
Formation

Row A Row B

Row B

Core 1 Core 2 Core 3 Core 4

Stage 1: Batch Formation Example

37

Row A

Row C

Row D

To Stage 2 (Batch Scheduling)

Next request goes to a different row Stage 1

Batch
Formation

Row A Row B

Row B

Core 1 Core 2 Core 3 Core 4

Stage 1: Batch Formation Example

38

Row D

Row D

To Stage 2 (Batch Scheduling)

Row A

Next request goes to a different row Stage 1

Batch
Formation

Row C

Row A Row B

Row B

Core 1 Core 2 Core 3 Core 4

Stage 1: Batch Formation Example

39

Row A

Row D

Row F

Batch Boundary

To Stage 2 (Batch Scheduling)

Time
window
expires

Next request goes to a different row Stage 1

Batch
Formation

Row D

Row A

Row C

Row A Row B

Row B

Core 1 Core 2 Core 3 Core 4

Stage 1: Batch Formation Example

40

Row E

Row E

Batch Boundary

To Stage 2 (Batch Scheduling)

Time
window
expires

Next request goes to a different row Stage 1

Batch
Formation

Row A

Row D

Row F Row D

Row A

Row C

Row A Row B

Row B

SMS: Staged Memory Scheduling

41

Stage 1

Stage 2

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req Req Batch Scheduler

Batch
Formation

Stage 3

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Stage 2: Batch Scheduler

 Goal: Minimize interference between applications

 Stage 1 forms batches within each application

 Stage 2 schedules batches from different applications

 Schedules the oldest batch from each application

 Question: Which application’s batch should be scheduled
next?

 Goal: Maximize system performance and fairness

 To achieve this goal, the batch scheduler chooses between
two different policies

42

Stage 2: Two Batch Scheduling Algorithms

 Shortest Job First (SJF)

 Prioritize the applications with the fewest outstanding memory
requests because they make fast forward progress

 Pro: Good system performance and fairness

 Con: GPU and memory-intensive applications get deprioritized

 Round-Robin (RR)

 Prioritize the applications in a round-robin manner to ensure
that memory-intensive applications can make progress

 Pro: GPU and memory-intensive applications are treated fairly

 Con: GPU and memory-intensive applications significantly
slow down others

43

Stage 2: Batch Scheduling Policy

 The importance of the GPU varies between systems and
over time  Scheduling policy needs to adapt to this

 Solution: Hybrid Policy

 At every cycle:

 With probability p : Shortest Job First  Benefits the CPU

 With probability 1-p : Round-Robin  Benefits the GPU

 System software can configure p based on the
importance/weight of the GPU

 Higher GPU importance  Lower p value

44

SMS: Staged Memory Scheduling

45

Stage 1

Stage 2

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req Req Batch Scheduler

Batch
Formation

Stage 3

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Stage 3: DRAM Command Scheduler

 High level policy decisions have already been made by:

 Stage 1: Maintains row buffer locality

 Stage 2: Minimizes inter-application interference

 Stage 3: No need for further scheduling

 Only goal: service requests while satisfying DRAM
timing constraints

 Implemented as simple per-bank FIFO queues

46

Putting Everything Together

47

Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch
Formation

GPU

Batch Scheduler

Putting Everything Together

48

Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch
Formation

GPU

Stage 2:

Batch Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Putting Everything Together

49

Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch
Formation

Stage 3:
DRAM
Command
Scheduler

GPU

Stage 2:

Current Batch
Scheduling

Policy

SJF

Batch Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Putting Everything Together

50

Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch
Formation

Stage 3:
DRAM
Command
Scheduler

GPU

Stage 2:

Current Batch
Scheduling

Policy

SJF

Current Batch
Scheduling

Policy

SJF

Batch Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Putting Everything Together

51

Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch
Formation

Stage 3:
DRAM
Command
Scheduler

GPU

Stage 2:

Current Batch
Scheduling

Policy

SJF

Current Batch
Scheduling

Policy

RR

Batch Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Putting Everything Together

52

Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch
Formation

Stage 3:
DRAM
Command
Scheduler

GPU

Stage 2:

Current Batch
Scheduling

Policy

SJF

Current Batch
Scheduling

Policy

RR

Batch Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Putting Everything Together

53

Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch
Formation

Stage 3:
DRAM
Command
Scheduler

GPU

Stage 2:

Current Batch
Scheduling

Policy

SJF

Current Batch
Scheduling

Policy

RR

Batch Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Putting Everything Together

54

Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch
Formation

Stage 3:
DRAM
Command
Scheduler

GPU

Stage 2:

Complexity

 Compared to a row hit first scheduler, SMS consumes*

 66% less area

 46% less static power

 Reduction comes from:

 Monolithic scheduler  stages of simpler schedulers

 Each stage has a simpler scheduler (considers fewer
properties at a time to make the scheduling decision)

 Each stage has simpler buffers (FIFO instead of out-of-order)

 Each stage has a portion of the total buffer size (buffering is
distributed across stages)

55 * Based on a Verilog model using 180nm library

Outline

 Background

 Motivation: CPU-GPU Systems

 Our Goal

 Observations

 Staged Memory Scheduling

1) Batch Formation

2) Batch Scheduler

3) DRAM Command Scheduler

 Results

 Conclusion

56

Methodology

 Simulation parameters

 16 OoO CPU cores, 1 GPU modeling AMD Radeon™ 5870

 DDR3-1600 DRAM 4 channels, 1 rank/channel, 8 banks/channel

 Workloads

 CPU: SPEC CPU 2006

 GPU: Recent games and GPU benchmarks

 7 workload categories based on the memory-intensity of CPU
applications

 Low memory-intensity (L)

 Medium memory-intensity (M)

 High memory-intensity (H)

57

Comparison to Previous Scheduling Algorithms

 FR-FCFS [Rixner+, ISCA’00]

 Prioritizes row buffer hits

 Maximizes DRAM throughput

 Low multi-core performance  Application unaware

 ATLAS [Kim+, HPCA’10]

 Prioritizes latency-sensitive applications

 Good multi-core performance

 Low fairness  Deprioritizes memory-intensive applications

 TCM [Kim+, MICRO’10]

 Clusters low and high-intensity applications and treats each
separately

 Good multi-core performance and fairness

 Not robust  Misclassifies latency-sensitive applications

58

Evaluation Metrics

 CPU performance metric: Weighted speedup

 GPU performance metric: Frame rate speedup

 CPU-GPU system performance: CPU-GPU weighted speedup

59

Evaluation Metrics

 CPU performance metric: Weighted speedup

 GPU performance metric: Frame rate speedup

 CPU-GPU system performance: CPU-GPU weighted speedup

60

Evaluated System Scenarios

 CPU-focused system

 GPU-focused system

61

Evaluated System Scenario: CPU Focused

 GPU has low weight (weight = 1)

 Configure SMS such that p, SJF probability, is set to 0.9

 Mostly uses SJF batch scheduling  prioritizes latency-

sensitive applications (mainly CPU)

62

Evaluated System Scenario: CPU Focused

 GPU has low weight (weight = 1)

 Configure SMS such that p, SJF probability, is set to 0.9

 Mostly uses SJF batch scheduling  prioritizes latency-

sensitive applications (mainly CPU)

63

Evaluated System Scenario: CPU Focused

 GPU has low weight (weight = 1)

 Configure SMS such that p, SJF probability, is set to 0.9

 Mostly uses SJF batch scheduling  prioritizes latency-

sensitive applications (mainly CPU)

64

1

 SJF batch scheduling policy allows latency-sensitive
applications to get serviced as fast as possible

0

2

4

6

8

10

12

L ML M HL HML HM H Avg

C
G

W
S

 FR-FCFS

ATLAS

TCM

SMS_0.9

Performance: CPU-Focused System

65

+17.2% over ATLAS

p=0.9

Workload Categories

 SJF batch scheduling policy allows latency-sensitive
applications to get serviced as fast as possible

0

2

4

6

8

10

12

L ML M HL HML HM H Avg

C
G

W
S

 FR-FCFS

ATLAS

TCM

SMS_0.9

Performance: CPU-Focused System

66

+17.2% over ATLAS

SMS is much less complex than
previous schedulers p=0.9

Workload Categories

Evaluated System Scenario: GPU Focused

 GPU has high weight (weight = 1000)

 Configure SMS such that p, SJF probability, is set to 0

 Always uses round-robin batch scheduling  prioritizes

memory-intensive applications (GPU)

67

Evaluated System Scenario: GPU Focused

 GPU has high weight (weight = 1000)

 Configure SMS such that p, SJF probability, is set to 0

 Always uses round-robin batch scheduling  prioritizes

memory-intensive applications (GPU)

68

Evaluated System Scenario: GPU Focused

 GPU has high weight (weight = 1000)

 Configure SMS such that p, SJF probability, is set to 0

 Always uses round-robin batch scheduling  prioritizes

memory-intensive applications (GPU)

69

1000

 Round-robin batch scheduling policy schedules GPU
requests more frequently

0

200

400

600

800

1000

L ML M HL HML HM H Avg

C
G

W
S

 FR-FCFS

ATLAS

TCM

SMS_0

Performance: GPU-Focused System

70

+1.6% over FR-FCFS

p=0

Workload Categories

 Round-robin batch scheduling policy schedules GPU
requests more frequently

0

200

400

600

800

1000

L ML M HL HML HM H Avg

C
G

W
S

 FR-FCFS

ATLAS

TCM

SMS_0

Performance: GPU-Focused System

71

+1.6% over FR-FCFS

SMS is much less complex than
previous schedulers p=0

Workload Categories

Performance at Different GPU Weights

72

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

GPUweight

Previous Best
Best Previous
Scheduler

Performance at Different GPU Weights

73

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

GPUweight

Previous Best
Best Previous
Scheduler

ATLAS TCM FR-FCFS

Performance at Different GPU Weights

74

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

GPUweight

Previous Best

SMS SMS

Best Previous
Scheduler

 At every GPU weight, SMS outperforms the best previous
scheduling algorithm for that weight

Performance at Different GPU Weights

75

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

GPUweight

Previous Best

SMS SMS

Best Previous
Scheduler

Additional Results in the Paper

 Fairness evaluation

 47.6% improvement over the best previous algorithms

 Individual CPU and GPU performance breakdowns

 CPU-only scenarios

 Competitive performance with previous algorithms

 Scalability results

 SMS’ performance and fairness scales better than previous
algorithms as the number of cores and memory channels
increases

 Analysis of SMS design parameters

76

Outline

 Background

 Motivation: CPU-GPU Systems

 Our Goal

 Observations

 Staged Memory Scheduling

1) Batch Formation

2) Batch Scheduler

3) DRAM Command Scheduler

 Results

 Conclusion

77

Conclusion

 Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

 Problem: Existing monolithic application-aware memory

scheduler designs are hard to scale to large request buffer size

 Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:

1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications

3) DRAM command scheduler: issues requests to DRAM

 Compared to state-of-the-art memory schedulers:

 SMS is significantly simpler and more scalable

 SMS provides higher performance and fairness

78

Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian,

Gabriel H. Loh*, Onur Mutlu

Carnegie Mellon University, *AMD Research

June 12th 2012

Backup Slides

80

Row Buffer Locality on Batch Formation

 OoO batch formation improves the performance of the
system by:

 ~3% when the batch scheduler uses SJF policy most of the
time

 ~7% when the batch scheduler uses RR most of the time

 However, OoO batch formation is more complex

 OoO buffering instead of FIFO queues

 Need to fine tune the time window of the batch formation
based on application characteristics (only 3%-5% performance
gain without fine tuning)

81

Row Buffer Locality on Batch Formation

82

0

1

2

3

4

5

6

CPU-WS

0
10
20
30
40
50
60
70
80
90

GPU-Frame Rate

Key Differences Between CPU and GPU

83

0

100

200

300

400

Memory Intensity

L
2
 M

P
K
I

Graphic Applications CPU Applications

~4x difference

MLP and RBL

 Key differences between a CPU application and a GPU
application

84

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Row Buffer Locality

0

1

2

3

4

5

6

Memory Level Parallelism

CPU-GPU Performance Tradeoff

85

0

10

20

30

40

50

60

70

80

90

1 0.5 0.1 0.05 0

F
ra

m
e

 R
a

te

SJF Probability

GPU Frame Rate

0

1

2

3

4

5

6

1 0.5 0.1 0.05 0

W
e

ig
h

te
d

 S
p

e
e

d
u

p

SJF Probability

CPU Performance

Dealing with Multi-Threaded Applications

 Batch formation: Groups requests from each application in
a per-thread FIFO

 Batch scheduler: Detects critical threads and prioritizes
them over non-critical threads

 Previous works have shown how to detect and schedule
critical threads

1) Bottleneck Identification and Scheduling in MT applications
[Joao+, ASPLOS’12]

2) Parallel Application Memory Scheduling

 [Ebrahimi, MICRO’11]

 DRAM command scheduler: Stays the same

86

Dealing with Prefetch Requests

 Previous works have proposed several solutions:

 Prefetch-Aware Shared-Resource Management for Multi-Core
Systems [Ebrahimi+, ISCA’11]

 Coordinated Control of Multiple Prefetchers in Multi-Core
Systems [Ebrahimi+, MICRO’09]

 Prefetch-aware DRAM Controller [Lee+, MICRO’08]

 Handling Prefetch Requests in SMS:

 SMS can handle prefetch requests before they enter the
memory controller (e.g., source throttling based on prefetch
accuracy)

 SMS can handle prefetch requests by prioritizing/deprioritizing
prefetch batch at the batch scheduler (based on prefetch
accuracy)

87

Fairness Evaluation

88

Unfairness (Lower is better)

Performance at Different Buffer Sizes

89

CPU and GPU Performance Breakdowns

90

CPU WS Frame Rate

CPU-Only Results

91

Scalability to Number of Cores

92

Scalability to Number of Memory Controllers

93

Detailed Simulation Methodology

Number of cores 16 GPU Max throughput 1600
ops/cycle

Number of GPU 1 GPU Texture/Z/Color
units

80/128/32

CPU reorder buffers 128 entries DRAM Bus 64
bits/channel

L1 (private) cache size 32KB,
4 ways

DRAM row buffer size 2KB

L2 (shared) cache size 8MB,
16 ways

MC Request buffer
size

300 entries

ROB Size 128 entries

94

Analysis to Different SMS Parameters

95

Global Bypass

 What if the system is lightly loaded?

 Batching will increase the latency of requests

 Global Bypass

 Disable the batch formation when the number of total
requests is lower than a threshold

96

