Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian,
Gabriel H. Loh*, Onur Mutlu

Carnegie Mellon University, *AMD Research
June 12th 2012

SAFARI CarnegieMellon AMDC

Executive Summary

Observation: Heterogeneous CPU-GPU systems require
memory schedulers with large request buffers

Problem: Existing monolithic application-aware memory
scheduler designs are hard to scale to large request buffer sizes

Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

Compared to state-of-the-art memory schedulers:
o SMS is significantly simpler and more scalable
o SMS provides higher performance and fairness

Outline

= Background
= Motivation

= Our Goal

= Observations

s Staged Memory Scheduling
1) Batch Formation
2) Batch Scheduler
3) DRAM Command Scheduler
= Results

s Conclusion

Main Memory 1s a Bottleneck
Core2 Core3 Core4

g J 4 J

Memory Scheduler

Memory Request Buffer

< =

To DRAM

Main Memory 1s a Bottleneck

Core 2 Core3 Core4
il 4 4 4
Req Req Req
Req

Memory Scheduler

Memory Request Buffer

All cores contend for limited off-chip bandwidth

o Inter-application interference degrades system performance
o The memory scheduler can help mitigate the problem

How does the memory scheduler deliver good performance
and fairness?

Three Principles of Memory Scheduling

Three Principles of Memory Scheduling

= Prioritize row-buffer-hit requests [Rixner+, ISCA'00]
o To maximize memory bandwidth

Currently open row
B

Three Principles of Memory Scheduling

Prioritize row-buffer-hit requests [Rixner+, ISCA'00]
o To maximize memory bandwidth

Req 1 Row A
Req 2 Row B Currently open row
Req 3 Row C B

Req 4 Row A
Req 5 Row B

Three Principles of Memory Scheduling

= Prioritize row-buffer-hit requests [Rixner+, ISCA'00]
o To maximize memory bandwidth

Older
Req 1 Row A
Req 2 Row B Currently open row
Req 3 Row C B

Req 4 Row A
Req 5 Row B

Newer

Three Principles of Memory Scheduling

= Prioritize row-buffer-hit requests [Rixner+, ISCA'00]
o To maximize memory bandwidth

Older
Reg ROW A
| Req 2 Row B Currently open row
Req 3 Row C B

Req 4 Row A
Req 5 Row B

Newer

Three Principles of Memory Scheduling

Prioritize row-buffer-hit requests [Rixner+, ISCA'00]
o To maximize memory bandwidth

Prioritize latency-sensitive applications [Kim+, HPCA'10]
o To maximize system throughput

Application Memory Intensity (MPKI)
1 5
2 1
3 2
4 10

Three Principles of Memory Scheduling

= Prioritize row-buffer-hit requests [Rixner+, ISCA'00]
o To maximize memory bandwidth

= Prioritize latency-sensitive applications [Kim+, HPCA'10]
o To maximize system throughput

Application Memory Intensity (MPKI)

3 2
4 10

12

Three Principles of Memory Scheduling

Prioritize row-buffer-hit requests [Rixner+, ISCA'00]
o To maximize memory bandwidth

Prioritize latency-sensitive applications [Kim+, HPCA'10]
o To maximize system throughput

Ensure that no application is starved [Mutlu and Moscibroda,
MICRO'07]

o To minimize unfairness

13

Outhine

= Background

= Motivation: CPU-GPU Systems
= Our Goal

= Observations

s Staged Memory Scheduling
1) Batch Formation
2) Batch Scheduler
3) DRAM Command Scheduler
= Results

s Conclusion

14

Memory Scheduling for CPU-GPU Systems

Current and future systems integrate a GPU along with
multiple cores

GPU shares the main memory with the CPU cores

GPU is much more (4x-20x) memory-intensive than CPU

How should memory scheduling be done when GPU is
integrated on-chip?

15

Introducing the GPU into the System
Core2 Core3 Core4

4 4 U 4

Memory Scheduler

- =

To DRAM

Introducing the GPU into the System
Core2 Core3 Core4

4 4 U 4

Memory Scheduler

- =

To DRAM

Introducing the GPU into the System

Core 1 Core 2 Core 3 Core 4

4

Memory Scheduler
g

To DRAM

= GPU occupies a significant portion of the request buffers

o Limits the MC’s visibility of the CPU applications’ differing
memory behavior - can lead to a poor scheduling decision

18

Naive Solution: Large Monolithic Butfer
Core 2 Core 3 Core 4

4 4 U 4

Memory Scheduler

< =

To DRAM

Problems with Large Monolithic Butfer

Memory Scheduler

20

Problems with Large Monolithic Butfer

Memory Scheduler

= A large buffer requires more complicated logic to:

o Analyze memory requests (e.g., determine row buffer hits)
o Analyze application characteristics

o Assign and enforce priorities
= This leads to high complexity, high power, large die area

21

Problems with LLarge Monolithic Butfer

More Complex Memory Scheduler

22

Our Goal

Design a new memory scheduler that is:

Q

Q
Q
Q

Scalable to accommodate a large number of requests
Easy to implement
Application-aware

Able to provide high performance and fairness, especially in
heterogeneous CPU-GPU systems

23

Outline

= Background

= Motivation: CPU-GPU Systems
= Our Goal

= Observations

s Staged Memory Scheduling
1) Batch Formation
2) Batch Scheduler
3) DRAM Command Scheduler
= Results

s Conclusion

24

Key Functions of a Memory Controller

= Memory controller must consider three different things
concurrently when choosing the next request:

1) Maximize row buffer hits
o Maximize memory bandwidth

2) Manage contention between applications
o Maximize system throughput and fairness

3) Satisfy DRAM timing constraints

= Current systems use a centralized memory controller
design to accomplish these functions

o Complex, especially with large request buffers

25

Key Idea: Decouple Tasks into Stages

= Idea: Decouple the functional tasks of the memory controller
o Partition tasks across several simpler HW structures (stages)

1) Maximize row buffer hits
o Stage 1: Batch formation

o Within each application, groups requests to the same row into
batches

2) Manage contention between applications
a Stage 2: Batch scheduler
o Schedules batches from different applications
3) Satisfy DRAM timing constraints
a Stage 3: DRAM command scheduler
o Issues requests from the already-scheduled order to each bank

26

Outhine

= Background

= Motivation: CPU-GPU Systems
= Our Goal

= Observations

= Staged Memory Scheduling
1) Batch Formation
2) Batch Scheduler
3) DRAM Command Scheduler
= Results

s Conclusion

27

SMS: Staged Memory Scheduling
Core 1 Core 2 Core3 Core4 GPU

4 4 U 4 4

Monolithic Scheduler

Memory Scheduler

=

To DRAM

SMS: Staged Memory Scheduling

Core 1 Core 2 Core 3 Core 4 GPU

Stage 1

Batch
Formation

Stage 3
DRAM

Command Bank 1 Bank 2 Bank 3 Bank 4
Scheduler -
To DRAM

29

SMS: Staged Memory Scheduling

Core 1 Core 2

Stage 1
Batch -
Formation -

Core 3 Core 4
1

[]

[]

30

Stage 1: Batch Formation

Goal: Maximize row buffer hits

At each core, we want to batch requests that access the
same row within a limited time window

A batch is ready to be scheduled under two conditions
1) When the next request accesses a different row
2) When the time window for batch formation expires

Keep this stage simple by using per-core FIFOs

31

Stage 1: Batch Formation Example

Stage 1
9 Core 1 Core 2 Core 3 Core 4

Formation ||] (] (]

To Stage 2 (Batch Scheduling)

32

Stage 1: Batch Formation Example

Stage 1
9 Core 1 Core 2 Core 3 Core 4

Batch -
Formation m Row B ﬂ ﬂ

To Stage 2 (Batch Scheduling)

33

Stage 1: Batch Formation Example

Stage 1
9 Core 1 Core 2 Core 3 Core 4

Batch
Formation ﬂ RO\‘LV B ﬂ, ﬂ,

To Stage 2 (Batch Scheduling)

34

Stage 1: Batch Formation Example

Stage 1
9 Core 1 Core 2 Core 3 Core 4

ormeion A 1

Row B

Row B

To Stage 2 (Batch Scheduling)

35

Stage 1: Batch Formation Example

Next request goes to a different row
Core 1 Core 2 Core 3 Core 4

ormeion A |

Stage 1

To Stage 2 (Batch Scheduling)

36

Stage 1: Batch Formation Example

Next request goes to a different row
Core 1 Core 2 Core 3 Core 4

Batch
omation [| E@ |

Stage 1

To Stage 2 (Batch Scheduling)

37

Stage 1: Batch Formation Example

Next request goes to a different row
Core 1 Core 2 Core 3 Core 4

Batch
Formation ﬂ ﬂ m ﬂ

Stage 1

To Stage 2 (Batch Scheduling)

38

Stage 1: Batch Formation Example

Stage 1 Next request goes to a different row
Core 1 Core 2 Core 3 Core 4

Formation ||] (] (]

Time

window
expires Row A
Row A

Batch Boundary

To Stage 2 (Batch Scheduling)

39

Stage 1: Batch Formation Example

Stage 1 Next request goes to a different row
Core 1 Core 2 Core 3 Core 4

Formation ||] (] (]

Time

window
expires Row A
Row A

Batch Boundary

To Stage 2 (Batch Scheduling)

40

SMS: Staged Memory Scheduling

Core 1 Core 2 Core 3 Core 4 GPU

Stage 1

Batch
Formation

Stage 2

Stage 3

DRAM
Command Bank 1 Bank 2 Bank 3 Bank 4
Scheduler

To DRAM

41

Stage 2: Batch Scheduler

Goal: Minimize interference between applications

Stage 1 forms batches within each application

Stage 2 schedules batches from different applications
o Schedules the oldest batch from each application

Question: Which application’s batch should be scheduled
next?

Goal: Maximize system performance and fairness

o To achieve this goal, the batch scheduler chooses between
two different policies

42

Stage 2: Two Batch Scheduling Algorithms

Shortest Job First (SJF)

o Prioritize the applications with the fewest outstanding memory
requests because they make fast forward progress

o Pro: Good system performance and fairness
o Con: GPU and memory-intensive applications get deprioritized

Round-Robin (RR)

o Prioritize the applications in a round-robin manner to ensure
that memory-intensive applications can make progress

o Pro: GPU and memory-intensive applications are treated fairly

o Con: GPU and memory-intensive applications significantly
slow down others

43

Stage 2: Batch Scheduling Policy

The importance of the GPU varies between systems and
over time - Scheduling policy needs to adapt to this

Solution: Hybrid Policy
At every cycle:

o With probability p : Shortest Job First - Benefits the CPU
o With probability 7-p : Round-Robin - Benefits the GPU

System software can configure p based on the
importance/weight of the GPU

o Higher GPU importance - Lower p value

44

SMS: Staged Memory Scheduling

Stage 3

DRAM

Command Bank 1 Bank 2 Bank 3 Bank 4
Scheduler ‘

To DRAM

45

Stage 3: DRAM Command Scheduler

High level policy decisions have already been made by:
o Stage 1: Maintains row buffer locality
o Stage 2: Minimizes inter-application interference

Stage 3: No need for further scheduling

Only goal: service requests while satisfying DRAM
timing constraints

Implemented as simple per-bank FIFO queues

46

Putting Everything Together

Stage 1:
Batch
Formation

Corel Core?2 Core3 Core4 GPU
J 3 J J J

47

Putting Everything Together

Corel Core?2 Core3 Core4 GPU
J 3 J J

Stage 1:
Batch | | (e

Formation - - —

Stage 2. ‘ Batch Scheduler

48

Putting Everything Together

Stage 1:
Batch
Formation

Corel Core?2 Core3 Core4 GPU
J 3 J J J

Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

49

Putting Everything Together

Stage 1:
Batch
Formation

Corel Core?2 Core3 Core4 GPU
J 3 J J J

Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

SJF

50

Putting Everything Together

Stage 1:
Batch
Formation

Corel Core?2 Core3 Core4 GPU
J 3 J J J

Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

SJF

51

Putting Everything Together

Stage 1:
Batch
Formation

Corel Core2 Core3 Core4
J 3 J J

GPU
J

Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

RR

52

Putting Everything Together

Stage 1:
Batch
Formation

Corel Core?2 Core3 Core4 GPU
J 3 J J J

Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

RR

53

Putting Everything Together

Stage 1:
Batch
Formation

Corel Core?2 Core3 Core4 GPU
J 3 J J J

Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

RR

54

Complexity

Compared to a row hit first scheduler, SMS consumes*

Q

Q

66% less area
46% less static power

Reduction comes from:

Q

Q

Monolithic scheduler - stages of simpler schedulers

Each stage has a simpler scheduler (considers fewer
properties at a time to make the scheduling decision)

Each stage has simpler buffers (FIFO instead of out-of-order)

Each stage has a portion of the total buffer size (buffering is
distributed across stages)

* Based on a Verilog model using 180nm library 55

Outline

= Background

= Motivation: CPU-GPU Systems
= Our Goal

= Observations

s Staged Memory Scheduling
1) Batch Formation
2) Batch Scheduler
3) DRAM Command Scheduler
= Results

s Conclusion

56

Methodology

Simulation parameters
o 16 Oo0O CPU cores, 1 GPU modeling AMD Radeon™ 5870
o DDR3-1600 DRAM 4 channels, 1 rank/channel, 8 banks/channel

Workloads
a CPU: SPEC CPU 2006
o GPU: Recent games and GPU benchmarks

o 7 workload categories based on the memory-intensity of CPU
applications
- Low memory-intensity (L)
- Medium memory-intensity (M)
- High memory-intensity (H)

57

Comparison to Previous Scheduling Algorithms

FR-FCFS [Rixner+, ISCA’00]

o Prioritizes row buffer hits

o Maximizes DRAM throughput

o Low multi-core performance € Application unaware

ATLAS [Kim+, HPCA10]

o Prioritizes latency-sensitive applications

o Good multi-core performance

o Low fairness € Deprioritizes memory-intensive applications

TCM [Kim+, MICRO'10]

o Clusters low and high-intensity applications and treats each
separately

o Good multi-core performance and fairness

o Not robust € Misclassifies latency-sensitive applications

58

Evaluation Metrics

CPU performance metric: Weighted speedup

GPU performance metric: Frame rate speedup

CPU-GPU system performance: CPU-GPU weighted speedup

59

Evaluation Metrics

CPU performance metric: Weighted speedup

CPU . IPCShared
WS —
IPCAlone
GPU performance metric: Frame rate speedup
FrameRategy, 4rea
GP US‘peedup — 2l
FrameRate ; ne

CPU-GPU system performance: CPU-GPU weighted speedup

CGWS = CPUys + GPUspoodu *

60

Evaluated System Scenarios

= CPU-focused system

= GPU-focused system

01

Evaluated System Scenario: CPU Focused
GPU has low weight (weight = 1)

Configure SMS such that p, SJF probability, is set to 0.9

o Mostly uses SJF batch scheduling = prioritizes latency-
sensitive applications (mainly CPU)

62

Evaluated System Scenario: CPU Focused
GPU has low weight (weight = 1)

CGWS = CPUy ¢

GPUSpEEdup x GPUWEight

Configure SMS such that p, SJF probability, is set to 0.9

o Mostly uses SJF batch scheduling = prioritizes latency-
sensitive applications (mainly CPU)

63

Evaluated System Scenario: CPU Focused
GPU has low weight (weight = 1)

CGWS — CPUWS GPUSpEEde

1

Configure SMS such that p, SJF probability, is set to 0.9

o Mostly uses SJF batch scheduling = prioritizes latency-
sensitive applications (mainly CPU)

64

Performance: CPU-Focused System

12
10
8 _
v +17. 2% over ATLAS FR-FCFS
5 6 m ATLAS
c mTCM
m SMS
2 . p=0.9
0

L ML M HML
Workload Categorles

= SJF batch scheduling policy allows latency-sensitive
applications to get serviced as fast as possible

65

Performance: CPU-Focused System

12

10

8 B}
% 6 - B ATLAS
O 4 mTCM

m SMS
2 - p=0.9
O _

L ML M HL HML HM H Avg
Workload Categories

SJF batch scheduling policy allows latency-sensitive
applications to get serviced as fast as possible

66

Evaluated System Scenario: GPU Focused
GPU has high weight (weight = 1000)

Configure SMS such that p, SJF probability, is set to 0

o Always uses round-robin batch scheduling = prioritizes
memory-intensive applications (GPU)

67

Evaluated System Scenario: GPU Focused
GPU has high weight (weight = 1000)

CGWS = CPUys + GPUspeequp * GPUweignt

Configure SMS such that p, SJF probability, is set to 0

o Always uses round-robin batch scheduling = prioritizes
memory-intensive applications (GPU)

68

Evaluated System Scenario: GPU Focused
GPU has high weight (weight = 1000)

CGWS = CPUys + GPUspoodup

1000

Configure SMS such that p, SJF probability, is set to 0

o Always uses round-robin batch scheduling = prioritizes
memory-intensive applications (GPU)

69

Pertformance: GPU-Focused System

1000 +1. 6% over FR-FCFS

800
W 600 FR-FCFS
5 m ATLAS
O 400 - = TCM
200
0

HML HM Avg
Workload Categories

= Round-robin batch scheduling policy schedules GPU
requests more frequently

70

Pertformance: GPU-Focused System

1000 -
800 -
600 | FR-FCFS
m ATLAS

400 .
SMS is much less complex than ~ |® M
200 - hedul m SMS
previous schedulers s

O I I I I I I

L ML M HL HML HM H Avg
Workload Categories

CGWS

= Round-robin batch scheduling policy schedules GPU
requests more frequently

71

Performance at Ditferent GPU Weights

1 |

V
= 0.8 - Best Previous
m "
e Scheduler
o 0.6
O
>
o 0.4
é 0.2
> O [T T TTTTI T T T T T T
()
0.001 0.1 10 1000

GPUweight

Performance at Ditferent GPU Weights

0 1 |

e 0.8 - Best Previous

m x

e Scheduler

“g 0.6

9 0.4

£ 0.2 Y Y Y |

7 ATLAS TCM FR-FCFS

m> O I T TTTIT] I T TTTTT I I T TTTTd
0.001 0.1 10 1000

GPUweight

Performance at Ditferent GPU Weights

1 |

V
= 0.8 - Best Previous
m "
e Scheduler
o 0.6 - SMS
>
o 0.4
é 0.2
> O [T T TTTTI T T T T T T
()
0.001 0.1 10 1000

GPUweight

Performance at Ditferent GPU Weights

1 |

0.8 - Best Previous
Scheduler
— SMS

0.6
0.4
0.2

O T T TTTT T T T T

0.001 0.1 10 1000
GPUweight

= At every GPU weight, SMS outperforms the best previous
scheduling algorithm for that weight

System Performance

Additional Results in the Paper

Fairness evaluation
a0 47.6% improvement over the best previous algorithms

Individual CPU and GPU performance breakdowns

CPU-only scenarios
o Competitive performance with previous algorithms

Scalability results

o SMS’ performance and fairness scales better than previous
algorithms as the number of cores and memory channels
Increases

Analysis of SMS design parameters

Outline

= Background

= Motivation: CPU-GPU Systems
= Our Goal

= Observations

s Staged Memory Scheduling
1) Batch Formation
2) Batch Scheduler
3) DRAM Command Scheduler

s Results
= Conclusion

77

Conclusion

Observation: Heterogeneous CPU-GPU systems require
memory schedulers with large request buffers

Problem: Existing monolithic application-aware memory
scheduler designs are hard to scale to large request buffer size

Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

Compared to state-of-the-art memory schedulers:
o SMS is significantly simpler and more scalable
o SMS provides higher performance and fairness

78

Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian,
Gabriel H. Loh*, Onur Mutlu

Carnegie Mellon University, *AMD Research
June 12th 2012

SAFARI CarnegieMellon AMDC

Backup Slides

80

Row Buffer LLocality on Batch Formation

000 batch formation improves the performance of the

system by:

o ~3% when the batch scheduler uses SJF policy most of the
time

o ~7% when the batch scheduler uses RR most of the time

However, 000 batch formation is more complex
a 000 buffering instead of FIFO queues

o Need to fine tune the time window of the batch formation
based on application characteristics (only 3%-5% performance
gain without fine tuning)

81

Row Butter Locality on Batch Formation

CPU-WS GPU-Frame Rate
6 go
0
> 70
4 60
50
3 40
; %
1 10
0 0
S §< O & O
& o ((00 & & c}((oo &
& & s & &5

‘o St
S 5 5°7 &

82

Key Ditferences Between CPU and GPU

Memory Intensity
400
— 300
X x
=200 .
_| ~4x difference
100 4
: __ n
K
?gw“ P
Y
&
&

Graphic Applications CPU Applications

83

MIL.P and RBL

= Key differences between a CPU application and a GPU

application

Memory Level Parallelism

1il,]

y
&
&

H
<z9
o 6

(3"

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Row Buffer Locality

il

QO

9
3

84

CPU-GPU Performance Tradeoff

Weighted Speedup

CPU Performance

iR

0.1 0.05
SJF Probability

90
80
70

860

n= 50

£ 40

£ 30
20
10

GPU Frame Rate

O 5 0.1 0 05
SJF Probability

85

Dealing with Mu

ti-Threaded App.

1cations

Batch formation: Grou
a per-thread FIFO

ps requests from each ap

vlication in

Batch scheduler: Detects critical threads and prioritizes

them over non-critical

threads

o Previous works have shown how to detect and schedule

critical threads

1) Bottleneck Identification and Scheduling in MT applications

[Joao+, ASPLOS12]

2) Parallel Application Memory Scheduling

[Ebrahimi, MICRO'11]

DRAM command scheduler: Stays the same

86

Dealing with Prefetch Requests

Previous works have proposed several solutions:

o Prefetch-Aware Shared-Resource Management for Multi-Core
Systems [Ebrahimi+, ISCA'11]

o Coordinated Control of Multiple Prefetchers in Multi-Core
Systems [Ebrahimi+, MICRO'09]

o Prefetch-aware DRAM Controller [Lee+, MICRO'08]

Handling Prefetch Requests in SMS:

o SMS can handle prefetch requests before they enter the
memory controller (e.qg., source throttling based on prefetch
accuracy)

o SMS can handle prefetch requests by prioritizing/deprioritizing
prefetch batch at the batch scheduler (based on prefetch
accuracy)

87

Fairness Evaluation

Unfairness (Lower is better)

FR-FCFS IS

-~ CFR-FCFS I
ATLAS I
TCM DI

CTCM [i

HL

HMLL. HM H Avg

105

88

Performance at Different Buffer Sizes

' ' M
' ' [M
8 i [
' ' '
' ' [
8 i ["
. ' ' "
' ' L
' '
1 i
_ _ _ _ L
"

— S
| —
et B
—elenu

oo~ oW = = O

0UBULIOLIR] NdD

89

CPU and GPU Performance Breakdowns

CPU WS Frame Rate

12 FR-FCFS CICM e - 120
10 b CFR-FCFS mmmmm SMSpo =—= |} B R ~iseam = 105
ATLAS I SMS, —— I 1IN e 355% o 90
o I o — = o

22.1% BN (U1 CAES 1) SRR 75

ol .. W 1:39..9%_135;_% _________________________ - 60
PRI (I || N NA— 1 WS (18 ((1F (i (IS S— . .- 45
30

Pl I IR EE R R et e . 15

0 0

ML M HL HML HM H Avg L ML M HL HML HM H Ave

90

CPU-Only Results

10
D]
2= 8
g%
n 6
@
o
25 4
L
& 5
E.n—l
2L 2
V)
0

FR-FCFS
........ ATLAS
TCM s
SMS /=3

HL HML HM H Avg

HL HML HM H Avg

N
-]

2
-

o
-

p—
-

Unfairness
(Lower 1s Better)

91

Scalability to Number of Cores

o = o oo

(Higher is Better)

CPU Weighted Speedup
o

[FR-FCFS s |
S
SMS = 22.1%

2 4 8 16
Number of Cores

GPU Frame Rate

(Higher is Better)
D B 00D M
cocooodSS

-

| -3. S%

2 4 8 16
Number of Cores

Unfairness
(Lower i1s Better)
=

_— bJ
h O

= L

47 4%

2 4 8
Number of Cores

16

92

Scalability to Number of Memory Controllers

CPU Weighted Speedup

N0 rrrrcrs — o 100 _60
5 gl M = 880} 850N e
: W —=_ | 23 2 50 L]298%
2 6229 BT 60 L
R 54.79% = = 230 B
5 4Fn = o 40 = 59y
= > 5 o 3
= 2 =20 c
Z CZ 210
0 2 4 8 0 2 4 8 0 2 4 8

Number of Channels Number of Channels Number of Channels

93

Detailed Simulation Methodology

Number of cores 16 GPU Max throughput | 1600
ops/cycle
Number of GPU 1 GPU Texture/Z/Color |80/128/32
units
CPU reorder buffers 128 entries | DRAM Bus 64
bits/channel
L1 (private) cache size | 32KB, DRAM row buffer size | 2KB
4 ways
L2 (shared) cache size | 8MB, MC Request buffer 300 entries
16 ways Size
ROB Size 128 entries

94

Analysis to Ditferent SMS Parameters

Normalized Value

Threshold Age DCS FIFO Size

1.6 07, e 0 1.6
1.4 50% ... = 1.4
1.2 F 200% o o 1.2

1 300% /—3 O 1

- = N

0.8 - M E 0.8
0.6 B B! B 5 0.6
0.4 “ 0.4

' o, G, . & '

Ry g Cp
Gy Y

95

Global Bypass

What if the system is lightly loaded?
o Batching will increase the latency of requests

Global Bypass

a Disable the batch formation when the number of total
requests is lower than a threshold

96

