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Executive Summary

Observation: Heterogeneous CPU-GPU systems require
memory schedulers with large request buffers

Problem: Existing monolithic application-aware memory
scheduler designs are hard to scale to large request buffer sizes

Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

Compared to state-of-the-art memory schedulers:
o SMS is significantly simpler and more scalable
o SMS provides higher performance and fairness
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Main Memory 1s a Bottleneck
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Memory Scheduler

Memory Request Buffer

All cores contend for limited off-chip bandwidth

o Inter-application interference degrades system performance
o The memory scheduler can help mitigate the problem

How does the memory scheduler deliver good performance
and fairness?
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Three Principles of Memory Scheduling
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Three Principles of Memory Scheduling

Prioritize row-buffer-hit requests [Rixner+, ISCA'00]
o To maximize memory bandwidth

Prioritize latency-sensitive applications [Kim+, HPCA'10]
o To maximize system throughput

Ensure that no application is starved [Mutlu and Moscibroda,
MICRO'07]

o To minimize unfairness
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Memory Scheduling for CPU-GPU Systems

Current and future systems integrate a GPU along with
multiple cores

GPU shares the main memory with the CPU cores

GPU is much more (4x-20x) memory-intensive than CPU

How should memory scheduling be done when GPU is
integrated on-chip?
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Introducing the GPU into the System

Core 1 Core 2 Core 3 Core 4

4

Memory Scheduler
g

To DRAM

= GPU occupies a significant portion of the request buffers

o Limits the MC’s visibility of the CPU applications’ differing
memory behavior - can lead to a poor scheduling decision
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Problems with Large Monolithic Butfer
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Problems with Large Monolithic Butfer

Memory Scheduler

= A large buffer requires more complicated logic to:

o Analyze memory requests (e.g., determine row buffer hits)
o Analyze application characteristics

o Assign and enforce priorities
= This leads to high complexity, high power, large die area
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Problems with LLarge Monolithic Butfer

More Complex Memory Scheduler
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Our Goal

Design a new memory scheduler that is:

Q

Q
Q
Q

Scalable to accommodate a large number of requests
Easy to implement
Application-aware

Able to provide high performance and fairness, especially in
heterogeneous CPU-GPU systems
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Key Functions of a Memory Controller

= Memory controller must consider three different things
concurrently when choosing the next request:

1) Maximize row buffer hits
o Maximize memory bandwidth

2) Manage contention between applications
o Maximize system throughput and fairness

3) Satisfy DRAM timing constraints

= Current systems use a centralized memory controller
design to accomplish these functions

o Complex, especially with large request buffers

25



Key Idea: Decouple Tasks into Stages

= Idea: Decouple the functional tasks of the memory controller
o Partition tasks across several simpler HW structures (stages)

1) Maximize row buffer hits
o Stage 1: Batch formation

o Within each application, groups requests to the same row into
batches

2) Manage contention between applications
a Stage 2: Batch scheduler
o Schedules batches from different applications
3) Satisfy DRAM timing constraints
a Stage 3: DRAM command scheduler
o Issues requests from the already-scheduled order to each bank
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Stage 1: Batch Formation

Goal: Maximize row buffer hits

At each core, we want to batch requests that access the
same row within a limited time window

A batch is ready to be scheduled under two conditions
1) When the next request accesses a different row
2) When the time window for batch formation expires

Keep this stage simple by using per-core FIFOs
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SMS: Staged Memory Scheduling
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Stage 2: Batch Scheduler

Goal: Minimize interference between applications

Stage 1 forms batches within each application

Stage 2 schedules batches from different applications
o Schedules the oldest batch from each application

Question: Which application’s batch should be scheduled
next?

Goal: Maximize system performance and fairness

o To achieve this goal, the batch scheduler chooses between
two different policies
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Stage 2: Two Batch Scheduling Algorithms

Shortest Job First (SJF)

o Prioritize the applications with the fewest outstanding memory
requests because they make fast forward progress

o Pro: Good system performance and fairness
o Con: GPU and memory-intensive applications get deprioritized

Round-Robin (RR)

o Prioritize the applications in a round-robin manner to ensure
that memory-intensive applications can make progress

o Pro: GPU and memory-intensive applications are treated fairly

o Con: GPU and memory-intensive applications significantly
slow down others
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Stage 2: Batch Scheduling Policy

The importance of the GPU varies between systems and
over time - Scheduling policy needs to adapt to this

Solution: Hybrid Policy
At every cycle:

o With probability p : Shortest Job First - Benefits the CPU
o With probability 7-p : Round-Robin - Benefits the GPU

System software can configure p based on the
importance/weight of the GPU

o Higher GPU importance - Lower p value
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SMS: Staged Memory Scheduling
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Stage 3: DRAM Command Scheduler

High level policy decisions have already been made by:
o Stage 1: Maintains row buffer locality
o Stage 2: Minimizes inter-application interference

Stage 3: No need for further scheduling

Only goal: service requests while satisfying DRAM
timing constraints

Implemented as simple per-bank FIFO queues
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Complexity

Compared to a row hit first scheduler, SMS consumes*

Q

Q

66% less area
46% less static power

Reduction comes from:

Q

Q

Monolithic scheduler - stages of simpler schedulers

Each stage has a simpler scheduler (considers fewer
properties at a time to make the scheduling decision)

Each stage has simpler buffers (FIFO instead of out-of-order)

Each stage has a portion of the total buffer size (buffering is
distributed across stages)

* Based on a Verilog model using 180nm library 55
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Methodology

Simulation parameters
o 16 Oo0O CPU cores, 1 GPU modeling AMD Radeon™ 5870
o DDR3-1600 DRAM 4 channels, 1 rank/channel, 8 banks/channel

Workloads
a CPU: SPEC CPU 2006
o GPU: Recent games and GPU benchmarks

o 7 workload categories based on the memory-intensity of CPU
applications
- Low memory-intensity (L)
- Medium memory-intensity (M)
- High memory-intensity (H)
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Comparison to Previous Scheduling Algorithms

FR-FCFS [Rixner+, ISCA’00]

o Prioritizes row buffer hits

o Maximizes DRAM throughput

o Low multi-core performance € Application unaware

ATLAS [Kim+, HPCA10]

o Prioritizes latency-sensitive applications

o Good multi-core performance

o Low fairness € Deprioritizes memory-intensive applications

TCM [Kim+, MICRO'10]

o Clusters low and high-intensity applications and treats each
separately

o Good multi-core performance and fairness

o Not robust € Misclassifies latency-sensitive applications
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Evaluation Metrics

CPU performance metric: Weighted speedup

GPU performance metric: Frame rate speedup

CPU-GPU system performance: CPU-GPU weighted speedup
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Evaluation Metrics

CPU performance metric: Weighted speedup

CPU . IPCShared
WS —
IPCAlone
GPU performance metric: Frame rate speedup
FrameRategy, 4rea
GP US‘peedup — 2l
FrameRate ; ne

CPU-GPU system performance: CPU-GPU weighted speedup

CGWS = CPUys + GPUspoodu *
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Evaluated System Scenarios

= CPU-focused system

= GPU-focused system

01



Evaluated System Scenario: CPU Focused
GPU has low weight (weight = 1)

Configure SMS such that p, SJF probability, is set to 0.9

o Mostly uses SJF batch scheduling = prioritizes latency-
sensitive applications (mainly CPU)
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Evaluated System Scenario: CPU Focused
GPU has low weight (weight = 1)

CGWS = CPUy ¢

GPUSpEEdup x GPUWEight

Configure SMS such that p, SJF probability, is set to 0.9

o Mostly uses SJF batch scheduling = prioritizes latency-
sensitive applications (mainly CPU)
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Evaluated System Scenario: CPU Focused
GPU has low weight (weight = 1)

CGWS — CPUWS GPUSpEEde

1

Configure SMS such that p, SJF probability, is set to 0.9

o Mostly uses SJF batch scheduling = prioritizes latency-
sensitive applications (mainly CPU)
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Performance: CPU-Focused System
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applications to get serviced as fast as possible
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Evaluated System Scenario: GPU Focused
GPU has high weight (weight = 1000)

Configure SMS such that p, SJF probability, is set to 0

o Always uses round-robin batch scheduling = prioritizes
memory-intensive applications (GPU)
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Evaluated System Scenario: GPU Focused
GPU has high weight (weight = 1000)

CGWS = CPUys + GPUspeequp * GPUweignt

Configure SMS such that p, SJF probability, is set to 0

o Always uses round-robin batch scheduling = prioritizes
memory-intensive applications (GPU)
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Evaluated System Scenario: GPU Focused
GPU has high weight (weight = 1000)

CGWS = CPUys + GPUspoodup

1000

Configure SMS such that p, SJF probability, is set to 0

o Always uses round-robin batch scheduling = prioritizes
memory-intensive applications (GPU)
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Pertformance: GPU-Focused System
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= Round-robin batch scheduling policy schedules GPU
requests more frequently
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Pertformance: GPU-Focused System
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= Round-robin batch scheduling policy schedules GPU
requests more frequently
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Performance at Ditferent GPU Weights
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Performance at Ditferent GPU Weights
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= At every GPU weight, SMS outperforms the best previous
scheduling algorithm for that weight

System Performance




Additional Results in the Paper

Fairness evaluation
a0 47.6% improvement over the best previous algorithms

Individual CPU and GPU performance breakdowns

CPU-only scenarios
o Competitive performance with previous algorithms

Scalability results

o SMS’ performance and fairness scales better than previous
algorithms as the number of cores and memory channels
Increases

Analysis of SMS design parameters
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Conclusion

Observation: Heterogeneous CPU-GPU systems require
memory schedulers with large request buffers

Problem: Existing monolithic application-aware memory
scheduler designs are hard to scale to large request buffer size

Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

Compared to state-of-the-art memory schedulers:
o SMS is significantly simpler and more scalable
o SMS provides higher performance and fairness
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Row Buffer LLocality on Batch Formation

000 batch formation improves the performance of the

system by:

o ~3% when the batch scheduler uses SJF policy most of the
time

o ~7% when the batch scheduler uses RR most of the time

However, 000 batch formation is more complex
a 000 buffering instead of FIFO queues

o Need to fine tune the time window of the batch formation
based on application characteristics (only 3%-5% performance
gain without fine tuning)
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Row Butter Locality on Batch Formation
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Key Ditferences Between CPU and GPU
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MIL.P and RBL

= Key differences between a CPU application and a GPU

application

Memory Level Parallelism
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CPU-GPU Performance Tradeoff

Weighted Speedup

CPU Performance
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Dealing with Mu

ti-Threaded App.

1cations

Batch formation: Grou
a per-thread FIFO

ps requests from each ap

vlication in

Batch scheduler: Detects critical threads and prioritizes

them over non-critical

threads

o Previous works have shown how to detect and schedule

critical threads

1) Bottleneck Identification and Scheduling in MT applications

[Joao+, ASPLOS12]

2) Parallel Application Memory Scheduling

[Ebrahimi, MICRO'11]

DRAM command scheduler: Stays the same
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Dealing with Prefetch Requests

Previous works have proposed several solutions:

o Prefetch-Aware Shared-Resource Management for Multi-Core
Systems [Ebrahimi+, ISCA'11]

o Coordinated Control of Multiple Prefetchers in Multi-Core
Systems [Ebrahimi+, MICRO'09]

o Prefetch-aware DRAM Controller [Lee+, MICRO'08]

Handling Prefetch Requests in SMS:

o SMS can handle prefetch requests before they enter the
memory controller (e.qg., source throttling based on prefetch
accuracy)

o SMS can handle prefetch requests by prioritizing/deprioritizing
prefetch batch at the batch scheduler (based on prefetch
accuracy)
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Fairness Evaluation

Unfairness (Lower is better)
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Performance at Different Buffer Sizes
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CPU and GPU Performance Breakdowns
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CPU-Only Results
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Scalability to Number of Cores
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Scalability to Number of Memory Controllers

CPU Weighted Speedup
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Detailed Simulation Methodology

Number of cores 16 GPU Max throughput | 1600
ops/cycle
Number of GPU 1 GPU Texture/Z/Color |80/128/32
units
CPU reorder buffers 128 entries | DRAM Bus 64
bits/channel
L1 (private) cache size | 32KB, DRAM row buffer size | 2KB
4 ways
L2 (shared) cache size | 8MB, MC Request buffer 300 entries
16 ways Size
ROB Size 128 entries
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Analysis to Ditferent SMS Parameters

Normalized Value
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Global Bypass

What if the system is lightly loaded?
o Batching will increase the latency of requests

Global Bypass

a Disable the batch formation when the number of total
requests is lower than a threshold
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