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ABSTRACT

Modern architectures trackmemory accesses using page granularity

metadata such as access and dirty bits, leading to fundamental

tradeoffs for system software that uses this metadata. Larger page

sizes reduce address translation overheads and page table footprints.

However, coarse metadata bits for larger pages limit software’s

visibility into application-level memory usage, resulting in memory

bloat and performance pathologies. As DRAM capacity continues

to expand, we expect software to react by aggressively mapping

with larger page sizes, making this tradeoff space more challenging

to navigate.

We study the relationship between metadata granularity and

fidelity, the degree to which metadata correctly approximates actual

access patterns.We focus on 2MB page support on x86-64 and GPUs,

measuring fidelity across a wide range of benchmarks. Fidelity can

be poor at a coarse granularity, and high variance occurs even

within applications. To address this problem, we propose Prism,

which provides architectural support for variable–granularity ac-

cess and dirty bits. Evaluation of Linux/x86-64 and GPU prototypes

of Prism show modest additional hardware can reduce metadata

fidelity loss by up to 65% and 55% at a performance cost of less

than 1% and 2% on CPUs and GPUs respectively. We show that

the recovered fidelity can eliminate performance pathologies and

improve the performance of GPGPU applications using demand

paging by 29.8% on average.

CCS CONCEPTS

• Software and its engineering → Virtual memory; • Com-

puter systems organization → Parallel architectures.
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1 INTRODUCTION

System software depends on memory access metadata such as

access and dirty bits to manage memory, using metadata to estimate

how frequently a page is accessed or modified. These metadata are

essential for subsystems such as transparent huge page support

(THP [27, 38]), page migration between NVM and DRAM [30],

and same-page merging (KSM [55]). For example, OS-level page

reclamation reallocates infrequently accessed pages to processes

that can better utilize them. The accuracy of the metadata used to

estimate usage patterns determines the ability of such subsystems to

improve application performance and system utilization. Metadata

granularity has a first-order impact on that accuracy.

Current systems rely on architectural support for per-page ac-

cess, and dirty metadata bits, set by the hardware and read by

software. In a traditional system, using uniform, small page sizes

(4KB), page-granularity bits suffice to accurately characterize mem-

ory access patterns. However, recent explosive growth in DRAM

capacities has forced hardware vendors and system software de-

velopers to revisit larger (e.g. 2MB1) page sizes to keep address

translation overheads in check. Relative to 4KB pages, tracking

metadata at 2MB-page granularity can entail up to a 512× accuracy

loss due to approximation because a single bit must characterize

access patterns over a much larger extent of memory. Recent stud-

ies exemplified this accuracy loss for dirty bits for the use cases of

VM live migration and RDMA based remote memory [25] and for

access bits used by OSes and hypervisors [59, 71].

Historically, OSes have struggled to support multiple page sizes

efficiently due to inaccurate, noisy, or unavailable metadata. This

exposes workloads to performance overheads, memory bloat, and

unfairness problems so severe that sysadmins often disable huge

pages in production [1, 28, 62, 65, 73, 78, 88, 95]. Without accurate

metadata, critical subsystems can easily exhibit unpredictable or

pathological behavior because the OS is unable to discern whether

large pages are frequently accessed or whether contiguity is well-

utilized. Huge page management remains an active area of re-

search [59, 67, 71] because of the lost accuracy that is fundamental

1We follow Linux parlance by calling 2MB pages “huge pages”.



to coarse metadata granularity. However, as memory capacities

continue to escalate, the performance price of simply turning off

huge pages will become unacceptable.

This paper proposes to decouple memory metadata granularity

from page size. We focus on access and dirty bits for 2MB huge

pages on CPUs and GPUs. We explore the granularity requirements

of modern applications by measuring their metadata fidelity loss,

defined as the percentage of bits incorrectly approximated at coarse

granularity relative to 4KB base pages. Empirically, fidelity loss

has high variance across and within individual workloads. We

propose a design for software-controlled variable granularity access

and dirty bits. We extend page table formats to enable optional

additional page table pages that store additional metadata bits at a

granularity chosen by the software. For legacy software that uses

traditional page-granularity metadata, the design is transparent

and incurs no performance or memory overheads. For emerging

software that leverages finer-grain metadata, performance, area,

and energy overheads are negligible with fidelity recovered. We

make the following contributions:

• We provide a comprehensive study of metadata fidelity loss for

huge pages for CPUs and GPUs. We demonstrate high inter-

and intra-application variance, motivating the need for system-

controlled metadata granularity.

• We propose a design to decouple memory metadata from page

size, enabling per-page control over granularity for 2MB huge

pages. The design reduces the fidelity lost on average from 65%

and 55% to 14% and 13% for access and dirty bits respectively on

CPUs, enabling accurate software visibility into memory access

patterns while preserving performance benefits of large pages.

• We show that our design generalizes across CPUs and GPUs.

Our design reduces fidelity loss on a GPU and improves demand-

paging on a GPU by 29.8% on average.

2 MOTIVATION

Commodity processors have supported multiple page sizes for

decades [83]. For example, x86-64 supports 1GB, 2MB, and 4KB

mappings. Recent technology trends such as explosive DRAM ca-

pacity growth and anticipated large NVM capacities incentivize the

use of larger pages to improve performance [6, 10, 15, 34, 59, 63] for

large memory workloads by reducing TLB-miss related overheads.

The burden of managing multiple page sizes falls on software,

whether decisions about which page size to use are relegated to

applications [56], or made transparently by the OS or hypervi-

sor [27, 42, 59, 67, 71]. Modern OSes and hypervisors aggressively

map pages with larger page sizes [27, 42, 57, 59] to increase TLB

reach and reduce TLB misses. However, improperly managed, huge

pages can cause memory bloat, performance variability, and unfair-

ness, often doing so by allocating huge pages to applications that

cannot actually benefit from them (e.g., due to high locality or small

working sets). Huge page mappings can reduce the effectiveness of

system software that depends on per-page metadata.

Memory access frequency: Access frequency approximation or

“hotness” of a memory region informs several OS subsystems in-

cluding page reclamation and working set estimation (kswapd and

kpageidle in Linux, respectively). For future system designs such

asmulti-tier memory hierarchies that treat DRAM as a cache for per-

sistent memory [30], access frequency will determine placement in

the memory hierarchy to hide the increased latencies of persistent

memory. Application-level trends toward larger memory footprints

have driven the emergence of multi-socket servers with up to 100s

of TB of memory, with NUMA effects that cause bandwidth and

latency to differ by 2× to 8×. Similar effects will impact newer ar-

chitectures using multi-chip modules (MCMs) [29, 48, 51, 98] and

will likely begin to impact GPUs [9, 64].

Migration and replication of data pages and page-tables are com-

monly used to ameliorate the performance impact of NUMA [2, 23,

87, 94] effects, but policies depend critically on access frequency

metadata. When a single access bit is read periodically to determine

the hotness of an entire 2MB region, pages can easily appear artifi-

cially hot. Figure 1 shows the measured hotness of huge pages for

a variety of benchmarks using access bits read once per 100 mil-

lion instructions retired. For the majority of benchmark programs,

nearly all huge pages are identified as hot (e.g. between 0.9-1.0).

For some programs, the results are bi-modal since huge pages are

identified as either hot or cold. But except for blackscholes, huge

pages rarely fall in between. We show in §3 that this characteriza-

tion of hotness is dramatically inaccurate because of poor access

metadata fidelity.

Fragmentation and Bloat: Applications may be unable to com-

pletely utilize larger pages allocated to them by the OS. Linux THP,

for example, allocates huge pages optimistically and greedily, de-

spite the risk of underutilized huge pages causing internal fragmen-

tation. A process using only part of a huge page still reserves the

entire region, and page granularity metadatamakes it impossible for

the OS to detect such situations. The resulting memory bloat leads

administrators to disable THP in production workloads that could

otherwise realize performance boosts [1, 28, 62, 65, 73, 78, 88, 95].

Access metadata maintained at finer granularity by the hardware

could easily solve the problem [59, 71].

Page Migration: System-level services such as swapping to disk

and VM migration transparently migrate the contents of a physical

page from one location to another (e.g., from DRAM to hard disk

or from one physical host to another). A single dirty bit per 2MB

or 1GB huge page gives system software a very coarse hint about

whether the contents of a page have been updated, forcing software

to choose between blindly transferring page contents which may

not have been updated, or inducing overheads to detect dirty sub-

pages in software [67]. Finer grain dirty metadata can dramatically

improve the efficiency and simplicity of subsystems depending on

memory migration primitives.

Huge page promotion/demotion: OS-level transparent huge page

management treats memory contiguity as a first-class allocatable re-

source [59, 67, 71]. Discerning whether a huge page is well-utilized

requires information about memory access patterns (i.e., metadata)

so the OS or the hypervisor can allocate a huge page fairly and

performance-profitably. Pathologies in transparent huge page sup-

port are the inevitable result of poor metadata fidelity of current

architectures.
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Figure 1: Large page “Hotness” for SPEC, Parsec, Redis, and Graph500 with access bits read once per 100 million instructions.

Why software cannot solve the problem? OS techniques such as

Ingens [59], Hawkeye [71], and huge pages in FreeBSD [67] imple-

ment OS heuristics to detect when a process may benefit from a

huge page promotion but induce software overheads and additional

complexity while failing to completely solve the problem. Heuris-

tics do not help with the symmetric problem of deciding when

to demote huge pages based on poor utilization. Better hardware

support is likely the only viable alternative to complex schema such

as costly proactive, speculative, and/or probabilistic demotion [42].

PTE emulation, splintering, and sampling are some options that

induce complexity and performance overheads without completely

solving the problem.

3 METADATA FIDELITY

To understand what granularity metadata is needed by applica-

tions, we measure fidelity loss for access and dirty metadata bits

on a comprehensive range of workloads shown in Table 1, which

include several modern huge page-sensitive applications for CPUs

and GPUs, including Parsec [22], SPEC [90], GUPS, graph500 [41]

and Redis [77] and GPU benchmarks from the MOSAIC GPU simu-

lator [10]. The fidelity loss for a 2MB region over a time-period is

the percentage of bits maintained at 4KB granularity incorrectly

approximated by the single-bit maintained for 2MB pages.

We perform measurements on real hardware for CPUs, and in

simulation for GPUs, capturing and comparing metadata main-

tained at different granularities. To enable a meaningful compari-

son, we create a deterministic runtime system which ensures that

the address space layout for an application is identical whether the

OS backs its address space with 2MB or 4KB pages. We periodically

pause and capture memory metadata at points in the execution

that are the same in both execution cases.2 For GPUs, capturing

metadata and establishing correspondence is considerably simpler,

as the prototype runs in a simulator: a single trace of memory ref-

erences and instruction counts is captured and post-processed to

produce a set of epochs and snapshots of per-page metadata.

The runtime has two components: a user-space region scanner

library that scans a program’s virtual address space collecting meta-

data for analysis, and modifications to the Linux kernel to retrieve

page-level metadata. The scanner produces a trace of page-level

2Our CPU runtime currently supports exclusively C/C++ programs and multithreaded
programs using pthreads. Fortran programs from SPEC CPU and non-pthreads pro-
grams from Parsec are omitted.

benchmark suite description

Parsec [22] Multi-threaded/shared-memory.

SPEC [90] SPEC CPU 2006

Redis [77] Redis server benchmark

Graph500 [41] Graph processing benchmark

GUPS Memory intensive stress benchmark

Rodinia [26] GPU benchmarks

Parboil [91] GPU benchmarks

CUDA-SDK [68] GPU benchmarks

Table 1: Workloads used in this paper.

metadata that can be used for analysis across executions. We divide

the program execution into epochs and execute a scan once per

epoch. The scanner walks the process’ virtual address space in 2

MB increments, making a system call to our modified Linux kernel

to collect mapping sizes and page table entries.

Enforcing Determinism: For metadata traces across executions

to be comparable, their corresponding epochs must represent the

same period of program execution, and their corresponding mem-

ory segments must be mapped to the same regions of the virtual

address space. To enforce epoch consistency, we compute the cur-

rent epoch number based on the total retired instruction count

provided by hardware performance counters. When there are mul-

tiple threads, we use the maximum retired instruction count of all

threads and delay thread execution until the scanner has completed.

To keep memory mappings consistent, we disable address space lay-

out randomization (ASLR). Large allocation requests to malloc()

that exceed the threshold to use mmap() (M_MMAP_THRESHOLD) can

be mapped at different virtual addresses across executions. To avoid

this, we set aside a large part of the virtual address space for these

allocations at program initialization, maintain a bump pointer, and

interpose all memory allocation requests. For those that exceed

M_MMAP_THRESHOLD, we invoke mmap() with our bump pointer as

the starting address.

Page-level Metadata: The scanners capture access, dirty, present,

user/supervisor, and read/write bits from page table entries. For

each 2MB extent, we maintain bit arrays to store the captured

metadata bits. We find that fidelity loss for P/R/U (PRU) bits is

generally low: usually, around 1-2%, and in the worst case up to

9.3% (fluidanimate). Moreover, the semantics for protection bits
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blackscholes 6727 304 A 57 32 11
D 14 30 11

canneal 890 289 A 26 26 17
D 12 22 16

dedup 1113 685 A 34 38 10
D 0 1 2

facesim 15745 127 A 75 35 16
D 17 34 14

ferret 17912 43 A 42 43 16
D 3 16 6

fluidanimate 16868 250 A 51 36 14
D 48 36 14

raytrace 11332 909 A 88 17 17
D 6 24 13

streamcluster 2335 53 A 2 13 11
D 0 5 7

x264 4500 32 A 89 8 17
D 15 35 12

astar-1 4052 135 A 31 30 15
D 32 32 15

astar-2 4500 13 A 75 38 13
D 74 39 13

bwaves-1 4500 412 A 43 46 13
D 26 42 12

bzip2-1 4141 422 A 49 38 13
D 29 36 12

bzip2-2 1786 45 A 44 39 11
D 30 49 10

bzip2-3 2985 47 A 33 41 10
D 27 41 10

bzip2-4 4500 422 A 42 38 12
D 32 37 12

bzip2-5 4500 422 A 35 37 12
D 32 34 12

bzip2-6 3321 302 A 48 39 12
D 29 36 12

cactusADM-1 4500 327 A 69 24 13
D 30 39 12
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h264ref-1 4500 10 A 79 17 15
D 79 33 12

h264ref-2 3324 8 A 82.8 14.0 14
D 79 30 12

h264ref-3 4500 29 A 90 11.4 15
D 50 48 13

hmmer-1 4500 11 A 61 23 12
D 61 23 12

hmmer-2 4500 1 A 70 11 9
D 71 11 9

lbm-1 4500 204 A 4 14 10
D 2 11 10

libquantum-1 4500 31 A 3 12 8
D 4 16 9

mcf-1 3120 836 A 77 25 21
D 68 43 20

namd-1 4500 9 A 89 10 13
D 72 41 12

omnetpp-1 4500 242 A 65 42 16
D 21 30 17

perlbench-1 4500 44 A 83 27 16
D 76 34 17

perlbench-2 3809 195 A 92 15 15
D 76 36 15

povray-1 4500 1 A 84 5 12
D 97 2 7

sjeng-1 4500 84 A 57 23 19
D 69 27 19

soplex-1 3609 58 A 54 29 16
D 27 40 15

soplex-2 3814 132 A 32 39 16
D 22 39 15

graph500 2106 2046 A 3 15 10
D 1 9 9

redis 2775 1337 A 88 12 21
D 4 6 14

gups 2000 4096 A 20 4 20
D 0.0 1 6

GPU

e
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BLK 152 23 A 87.0 5.4 11.6
D 32.7 42.0 10.2

BP 14 6 A 91.2 10.5 5.2
D 66.9 41.2 4.9

CFD 5 6 A 79.3 20.3 3.9
D 46.5 37.1 3.5

CONS 136 30 A 81.1 14.1 8.7
D 31.6 38.6 7.5

FWT 690 20 A 84.2 14.1 10.8
D 83.6 19.0 10.8

JPEG 3 4 A 89.7 17.6 2.3
D 29.1 45.8 1.6

LPS 15 1 A 99.8 0.0 0.0
D 0.0 0.0 0.0

NN 119 16 A 98.3 4.1 7.6
D 27.3 44.4 4.8

QTC 14 6 A 65.1 46.3 3.8
D 12.4 33.4 2.0

SC 287 40 A 90.4 9.6 12.6
D 6.2 23.7 8.5

SPMV 27 8 A 69.1 17.4 7.1
D 13.5 32.9 4.5

TRD 2 6 A 98.5 1.1 2.6
D 33.0 51.1 1.6

Table 2: Aggregate characterization of all benchmarks. Metadata type is shown in type. Fidelity loss mean and standard devi-

ation are in loss and stdev. The number of 100 million instruction intervals is in epochs, 2M-pgs is the number of 2MB pages.

The entropy column is the theoretical minimum number of bits required for zero fidelity loss.

are more fundamentally coupled with pages, and changing their

granularity would be more complex. In the remainder of the paper,

we focus on access and dirty bits because unlike PRU bits, they are

software hints, and we find that their granularity has a significant

performance impact.

Measuring fidelity:We post-process traces captured by the scan-

ners, establishing per epoch-region correspondence between traces

collected using 4KB mappings and traces collected using 2MB map-

pings. Due to OS-level decision-making (Linux THP is heuristic),

regions may or may not be backed by a 2MB huge page. Because

we force deterministic epoch boundaries and virtual address space

layout, accesses to a region during an epoch are identical regardless

of physical backing. Thus, the difference between metadata bits for

a huge page region vs. base page region during an epoch provides

a measure of fidelity loss for maintaining metadata at a coarser

granularity. The number of base page granularity metadata bits are

wrongly approximated by the single bit for a huge page metadata

bit divided by the total number of bits represents the fidelity loss

for a single epoch-region.

3.1 Fidelity Loss Statistics

Table 2 characterizes the workloads’ 2MB page usage and meta-

data fidelity loss. For CPUs, most workloads’ address spaces are

mapped by a combination of 2MB and 4KB pages because we rely

on Linux THP. We do not present data for workloads whose mem-

ory footprint is so small that THP never allocates 2MB pages for

them. GPU workloads use the Mosaic [10] GPU memory manager

to transparently manage huge pages; the majority of mappings use

2MB pages.

For each workload, the table shows the number of epochs, the

number of 2MB aligned regions backed by 2MB pages in the THP

execution, along with the epoch count. An epoch is a period of

100 million retired instructions. 3 Because Linux THP promotes

pages asynchronously as well as at allocation time, some fraction

of regions may not be backed by 2MB pages in all epochs where

they appear: the percentage of epoch-region pairs for which this

occurs is low, so we do not report it.

3We empirically set this epoch length to 1 million GPU instructions for GPGPU
workloads.
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Figure 2: Fidelity loss for access, and dirty bits for all benchmarks, shown using violin plots, which represent the density of

the distribution proportionally as the width of the bar at a given loss percentage. Dots represent the mean.

The average and standard deviation fidelity loss over all epoch-

region pairs are in the loss and stdev columns, grouped by the

metadata type column. The entropy column shows the theoret-

ical minimum number of metadata bits that would be required

to represent each metadata type with no fidelity loss for 4K page

granularity, computed as the log base-2 of the number of unique

bit-vectors observed over the application’s runtime for the given

metadata type.

The data show that fidelity loss varies by metadata type and is

highly application-specific. Fidelity loss for dirty bits is generally

lower than access bit loss, with a high variance within and across

workloads. In some cases (e.g., facesim), dirty bit fidelity loss is

negligible, but it can be higher than access bit fidelity loss (e.g.,

sjeng-1 with 68.4%). Access bit fidelity loss is typically higher, but

with similarly high variance. For example, graph500 has only 2.8%

loss over a multi-minute run time, while perlbench-2 and x264

have around 90% loss. The standard deviation of loss is usually quite

large, showing that some loss varies per region and over time. The

entropy measurements range from 2 to 21 bits ((mcf-1 and redis).

Dirty and access bit entropy is often different within a workload.

Fidelity Loss Distribution: Variance over time and per region is

high, as shown by standard deviation losses in Table 2. Figure 2

shows the distribution for access and dirty bit loss for all workloads

as violin [44] plots. The density at a given percentage is represented

by the width of bars, dots show the mean. Distributions are multi-

modal for many workloads. For example, ferret’s access bit loss

is dominated by a large number of epoch-region pairs with very

high (90% or greater) loss and a large number with very small loss

(20% or lower). The variance reflects both spatial diversity (some

regions have much higher loss) and temporal diversity (over time,

regions tend to be accessed differently). Multi-modal distributions

appear to be more common for access bits than for dirty bits.

Spatial and Temporal Fidelity: Metadata fidelity is sensitive to

type, use case, and the time-frame for which it is maintained. For

example, OS defragmentation (to increase contiguity) may examine

access bits at intervals on the order of many seconds. Accumulation

of access bits over that interval can inform a clear picture of what

pages have not been accessed at all but obscures information about

how recently individual pages have been touched.

We study the spatial and temporal fidelity of metadata bits for

time scales from 200ms to 12.8 seconds. Figure 3 shows the spatial

and temporal fidelity loss for access bits for all benchmarks. Dirty

bits follow similar trends. The data reflect a fundamental tension

between temporal and spatial loss. As the time scale increases, so

does the period between the consecutive clearing of metadata bits.

Consequently, set bits for 4k pages will tend to accumulate, making

the single bit for a huge page a better approximation of their 512 bits

over time. In the limit, as the time scale approaches infinity, assum-

ing a uniform random distribution of accesses, a single bit becomes
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Figure 3: Average spatial and temporal access bit fidelity loss versus time scale for all benchmarks.

a perfect spatial approximation (except when pages go completely

unreferenced). Conversely, as time scales increase, temporal fidelity

for each set bit may decrease, as the single bit allocated for it in

the base page mappings can approximate any number of accesses

during the sampling period. Figure 3 shows that the average per-bit

percentage of times the single bit over a longer time scale would

have been incorrect at the lowest (100ms) time scale (e.g. because a

page was only referenced during a subset of the 100ms epochs that

comprise the larger time scale).

Adding hardware-supportedmetadata bits: To study the poten-

tial benefit of adding more hardware supported metadata bits, we

post-process base page backed traces, OR’ing together metadata

bits to produce what hardware would have maintained given a

larger number of evenly distributed bits for that metadata type. We

subsequently compare against the original base page backed traces

to characterize fidelity loss, using a range of 2 to 256 additional bits

per huge page.

Our data show that improving fidelity requires increased gran-

ularity. Fidelity loss varies dramatically, incentivizing per-huge

page control of metadata granularity. Increased temporal fidelity is

achievable in software with a low overhead as demonstrated in [59],

so our design (§4) targets improved spatial fidelity for access and

dirty bits with support for multiple granularities.

4 PRISM

In this section, we present a hardware-software co-design to gain

additional visibility into memory access patterns at sub-page gran-

ularity while maintaining huge page mappings. We propose a few

modest hardware changes to support finer-grain metadata bits for

large pages. We introduce a structure called a metadata registry by

extending the page table, extend the TLBs to support extra meta-

data bits, and enhance the hardware page table walker to load and

update the metadata registry. We will discuss each of these changes

in detail for the rest of the section.

4.1 Metadata Registry

In today’s processors, hardware-managed metadata bits are stored

as part of page table entries. The viability of simply adding more

bits by extending page table formats is limited at best. Thus, we

propose a hardware design that can allocate additional per-address

space memory as part of the page table structure dedicated to

metadata storage. To simplify the discussion, we label this area the

Metadata-registry.

In a 4-level page table, we add a physically contiguous metadata

registry page right next to the level 2 page table pages, which

consists of 512 64-bit metadata registry entries (MREs) shown in

Figure 4. We take advantage of 9 unused bits in the level 2 entry

format for 2MB pages to encode the presence or absence of a valid



Figure 4: Structure of theMetadata-registry,which extends level 2 page table pageswith an additional physically contiguous

page containing 64-bits of additional metadata storage per entry in the level 2 page. We appropriate one of the 9 unused bits

in the x86-64 format for 2MB page entries as flag which indicates the presence or absence of a valid metadata registry entry

(MRE) at the same offset in the metadata page. The remaining 8 unused bits are appropriated to encode the number of access

and dirty bits the hardware should manage for the corresponding 2MB page.

MRE for the page, as well as the metadata granularity. With one

bit used for the flag, 8 bits remain to encode valid combinations of

metadata granularities: 3 bits for access metadata granularity, 3 for

dirty metadata, and 2 bits remain unused.

Table 3 shows encodings for metadata granularities, used in the

level 2 2MB page descriptors to tell the hardware how to interpret

metadata registry entries. Access and dirty bits can be set to power-

of-2 granularities ranging from 1 to 32. The entropy measurement

in the previous section showed that every workload ideally requires

different granularities of bits for access and dirty bits. See data in

Section 6 for the sensitivity studies used to select these granularities.

encoding granularity

000 1 bit

001 2 bits

010 4 bits

011 8 bits

100 16 bits

101 32 bits

11X Not allowed

Table 3: Metadata granularity encodings.

TLB Support: For applications to make use of the metadata registry,

TLB and hardware page table walkers need to support caching and

loading the corresponding metadata registry entry on a TLB miss.

We extend the 2MB TLB hardware to support storing the 64-bit

MRE and the MRE present bit along with the 2MB standard PTE.We

store a fully decompressed MRE (granularity 32) with the 2MB PTE

in the L1 and L2 TLBs, so we do not have to store the size encoding

in the TLB and decompress the MRE during latency-critical TLB

lookup.

Modern Intel x86-64 address translation hardware supports a

multi-level TLB hierarchy (L1 and L2 TLBs) along with page walk

caches [18] to reduce the cost of 4-level page walk on a TLB miss. L1

TLBs are split according to page sizes (separate TLBs for 4KB and

2MB) and more recent Broadwell architecture supports a combined

L2 TLB for caching 4KB and 2MB PTEs. We extend all structures

that can store the 2MB PTE (See Figure 5). The area and energy

analysis of extending the TLB resources is performed in §6.

Figure 5: Hardware TLB to support finer-grain metadata.

Boxes in gray show the original TLB hierarchy. Dashed

boxes in yellow show our moderate additions to cache meta-

data registry entries (MREs).

On a TLB lookup, if a 2MB PTE hits, the MRE is read along with

the entry since the MRE is stored along with the PTE. The access

and dirty bits are looked up in the MRE. If the access and dirty bits

are appropriately set, the TLB hit proceeds normally. But, if the

access or dirty bit is not set in the MRE, the correct bit is set in



the MRE in the TLB for the application to proceed ahead and page

table walk is issued in the background to write the correct bit to

the MRE in the metadata registry. Hardware-managed metadata

bits are updated using the same technique when access or dirty bit

is not set in the PTEs today. We extend that functionality in the

page table walker to support updating the metadata registry.

In addition, the page walker needs to be enhanced to fetch the

MRE from the metadata table on a 2MB TLB miss. In current hard-

ware, the page table walker will use the page walk caches to skip

some levels of the page table and access memory (cached or in

DRAM) to fetch the PTE corresponding to a TLB miss and intro-

duces it in the TLB. With our design, if the page table walker gets a

2MB PTE, it analyzes if the MRE present bit is set in the 2MB PTE.

If the MRE present bit is not set, it inserts the 2MB standard PTE

into the TLB. In case, the MRE present bit is set, then it knows the

physical address of the MRE since the physical address of the MRE

is just 4KB away from the PTE. The page table walker fetches the

MRE and then decompresses the MRE based on the size encoding

in the 2MB PTE and contents of the MRE. The MRE is easy to fetch

since it is physically contiguous to the level 2 page of the page

table, but cost another memory access (which maybe cached in data

caches) on a page table walk. Our experiments show that the added

cost of extra memory access on a 2MB TLB miss is negligible in

comparison to the benefits of 2MB page size.

Extension to 1GB page size: Figure 6 shows how Prism can be

extended to enable finer-granularity metadata for 1GB page size.

In this case, Prism can use the level 3 page table level to store

the additional pointers to required metadata bits. This design has

the same contiguity requirement as the 2MB design and requires

one contiguous 4KB page for the MRE entry in the L3 page table

level, and this design contains 512 MRE pointers inside the L3

page table. However, while storing the MRE in level 3 page table

is straightforward, scalable caching of those additional metadata

bits in the TLB would require a highly compressed TLB line format,

which is a challenge we will explore in future work.

Overall, Prism gives system software detailed information about

access and dirty bits to take better decisions on various tasks that

Figure 6: Prism extension for 1GB page size. The encoding

of bits is the same in 1GB PTE with unused bits.

it wants to perform like swapping a smaller granularity page. The

system software can use the information stored in the MRE just

like it uses the access and dirty bits today.

Note that all the hardware modifications are optionally enabled

by the system software. For these changes to be used, the system

software needs to set the 2MB PTE correctly with the granularity

to be used for a huge page along with its present bit (See §4.3). The

only cost to be paid is the area overhead.

4.2 Support for Arbitrary Granularity

We considered designs capable of supporting the full range of gran-

ularities between 1 and 512 bits for each metadata type, and even

user-defined metadata types. However, while our experiments show

that there are applications capable of benefiting from very fine gran-

ularity, they are not the common case. Moreover, the introduction

of additional metadata entries impacts page table walk design and

latency, as well as raising the question of whether additional meta-

data can be cached in extended TLB entries versus requiring a

separate hierarchy to avoid unreasonable impact on TLB design.

Arbitrary granularity metadata can be supported for example by

reserving a bit of MREs that indicates whether the MRE contains

metadata, or a pointer to a larger structure capable of encoding

more bits. Similarly, very large numbers of bits raise some difficult

questions about how to allow the hardware to update metadata bits

in response to loads and stores. In modern architectures, metadata

bits are written in both the TLB and main memory, enabling the

TLB to effectively filter redundant writes to the page table to set

metadata bits that are already set. Supporting large metadata bit-

counts could either force the addition of a caching structure to

perform such filtering or saturating the memory subsystem with

redundantmetadata updates that arise because nomechanism exists

to filter them.

Collectively, these considerations constitute strong incentive to

limit additional metadata bits to 64: it simplifies page table walk,

makes it practical to deal with metadata read/write by extending

TLB entries (we evaluate the impact of a range of design points in

Section 6, in particular, Figure 8), and still enables most applications

to reduce metadata fidelity loss for huge pages to very low levels.

4.3 Prism Software Interface

Prism supports application-level, or OS-level control over metadata

granularity through extensions to the system call interface similar

to mprotect called mmdconfig(), as follows:

int mmdconfig(void *addr, size_t len,

int mdtype, int bits);

Processes can set metadata granularity for all 2MB pages in

their address space by passing NULL for the addr parameter, or for

all/any parts of the region described by addr and len backed by

2MB pages.

5 METHODOLOGY

Performance Model: To measure the overheads of Prism’s meta-

data registry and hardware modifications, we combine performance

counter measurements from native executions with a linear perfor-

mance model (see Table 4). Compared to cycle-accurate simulation



on these workloads, this approach reduces weeks of simulation

time by orders of magnitude. Previous virtual memory system per-

formance studies use this approach [15, 18, 33, 34, 52].

Using hardware performance counters, we collect the following

metrics for each workload: total execution cycles (C), number of

2MB TLB misses (M2𝑀 ), and total page table walk cycles (C𝑃𝑇𝑊 ).

We also collect the number of page table walker loads by the level

of the memory hierarchy: L1 (PW𝐿1), L2 (PW𝐿2), L3 (PW𝐿3), and

DRAM (PW𝑚𝑒𝑚). We weigh the cost of accessing L1 cache, L2

cache, L3 cache, and memory for each workload by 3 cycles, 11

cycles, 40 cycles, and 200 cycles (their access latency) respectively,

which is an approximation of recent Intel CPUs [45, 46].

On a 2MB TLB miss with metadata, the hardware must retrieve

both the PTE and the corresponding MRE. Given this access pattern,

we expect a PTE and its MRE to be typically collocated at the same

level of the memory hierarchy. We, therefore, base the MRE access

cycles (MRE𝑎𝑐𝑐𝑒𝑠𝑠 ) on the observed memory characteristics of PTE

accesses during a page table walk (𝑃𝑊𝐿1 through 𝑃𝑊𝑚𝑒𝑚). Since

the physical address of the MRE is a constant offset from the PTE,

the MRE load requires just single memory access.

MRE updates are performed when access and dirty bits need to

be set in response to a retiring load or store. These updates in our

performance model are performed synchronously with the load or

store. We also model performance if these could be de-prioritized

and scheduled in the background. To estimate themaximumnumber

of possibleMRE updates, ourmodel assumes all MRE bits are cleared

at the start of each epoch (E) and that during the epoch all MRE𝑙𝑒𝑛
bits (64) for every 2MB page in the application (P2𝑀𝐵 ) will need to

be updated. Unlike the MRE load, the updates will require a page

walk and here we pessimistically model 2 memory loads to retrieve

the MRE.

MRE𝑎𝑐𝑐𝑒𝑠𝑠
𝑃𝑊𝐿1∗3+𝑃𝑊𝐿2∗11+𝑃𝑊𝐿3∗40+𝑃𝑊𝑚𝑒𝑚∗200

𝑃𝑊𝐿1+𝑃𝑊𝐿2+𝑃𝑊𝐿3+𝑃𝑊𝑚𝑒𝑚

C𝑀𝑅𝐸𝑙𝑜𝑎𝑑 M2𝑀𝐵 * MRE𝑎𝑐𝑐𝑒𝑠𝑠

C𝑀𝑅𝐸𝑢𝑝𝑑𝑎𝑡𝑒 E * P2𝑀𝐵 * MRE𝑎𝑐𝑐𝑒𝑠𝑠 * 2 * MRE𝑙𝑒𝑛

O(MRE load) 𝐶𝑀𝑅𝐸𝑙𝑜𝑎𝑑
𝐶

O(+MRE update)
𝐶𝑀𝑅𝐸𝑙𝑜𝑎𝑑+𝐶𝑀𝑅𝐸𝑢𝑝𝑑𝑎𝑡𝑒

𝐶

Table 4: Performance model for emulating hardware over-

heads.

GPU Evaluation:We modify Mosaic [10, 12], which is an open–

source variant of GPGPU-Sim [13] that models the behavior of

NVIDIA Unified Virtual Address Space [69] support. Table 5 shows

the GPU hardware configuration. Mosaic adds a memory allocator

into cuda-sim, the CUDA simulator within GPGPU-Sim, to handle

all virtual-to-physical address translations and to provide memory

protection, an accurate model of address translation to GPGPU-Sim,

including TLBs, page tables, and a page table walker. The page table

walker is shared across all SMs and allows up to 64 concurrent

walks. Both the L1 and L2 TLBs have separate entries for base

pages and huge pages [33, 52, 53, 72, 75, 76]. Each TLB contains 64

miss status holding registers (MSHRs) [58] to track in-flight page

table walks. The simulation infrastructure is modified to support

demand paging, by detecting page faults, faithfully modeling the

system I/O bus (i.e., PCIe) latency based on measurements from

NVIDIA GTX 1080 cards [70]. We utilize the state-of-the-art unified

memory design with prefetching and the capability to pro-actively

evict unused pages out of the GPU memory [60].

GPU Core Configuration

Shader Core Config 30 cores, 1020 MHz, GTO warp scheduler [80]

Private L1 Cache 16KB, 4-way associative, LRU, L1 misses are
coalesced before accessing L2, 1-cycle latency

Private L1 TLB 128 base page/16 huge page entries per core,
fully associative, LRU, single port, 1-cycle latency

Memory Partition Configuration
(6 memory partitions in total, with each partition accessible by all 30 cores)

Shared L2 Cache 2MB total, 16-way associative, LRU, 2 cache banks and
2 ports per memory partition, 10-cycle latency

Shared L2 TLB 512 base page/256 huge page entries, non-inclusive,
16-way/fully-associative (base page/huge page), LRU,
2 ports, 10-cycle latency

DRAM GDDR5, 1674 MHz, 6 channels, 8 banks per rank,
FR-FCFS scheduler [79, 100], burst length 8
capacity is set to 90% of the working set size
LRU page replacement policy

Table 5: Configuration of the simulated system.

We modify the page replacement policy to use Prism’s metadata

granularity. When the GPU needs to evict a page, the GPU searches

pages according to the configured metadata granularity including

the huge page baseline with 1 metadata bit per huge page. When

multiple pages have the same access metadata, one is randomly

chosen from among them as a target for eviction. We leverage both

8-bit and 32-bit metadata registry to improve GPU’s page replace-

ment policy. We execute 15 randomly selected GPGPU applications

from various benchmark suites [26, 68, 91]. To emulate the over-

subscribed systems, we configure the GPU memory to 90% of its

application’s memory footprint.

Memory Allocator: For CPU evaluation, we used the default glibc

allocator derived from ptmalloc. For GPU evaluation, we use state-

of-the-art memory allocator from previous works [10–12].

6 EVALUATION

This section reports sensitivity studies of temporal and spatial

fidelity as a function of time scale and number of metadata bits.

Based on these data, we report derived performance for a system

extendedwith Prism, alongwith estimates of additional area, power,

latency, and DRAM overheads.

6.1 Recovering Fidelity

Figure 7 shows the potential benefit of adding more hardware-

managed access bits, showing spatial access bit fidelity loss as a

function of the number of bits per 2MB extent, ranging from 2 bits

to 256-bits (a single bit is identical to THP, while 512 is identical

to using 4KB mappings). The data show that applications benefit

differently from more bits. For many applications, fidelity loss is

significantly reduced with 8-16 bits (e.g. bzip-*), while others

require a large number of additional bits to realize an improvement.
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Figure 7: Average access bit fidelity loss using increasing number of hardware-managed access bits

For example, redis, canneal, and sjeng-1, the loss does not drop

below 20% until 256 bits. Others, such as blackscholes require

little additional fidelity and are dramatically improved by a handful

of additional bits.

Selecting the range of metadata granularities to support in hard-

ware must balance fidelity gains against the impact in complexity,

area, energy, andmemory overheads. Limiting total additional meta-

data bits to 64 per huge page is desirable because it provides some

per-page flexibility while preserving a simple page table walker and

simple offset-based lookup in the metadata registry. Figure 8 shows

the harmonic mean loss across all benchmarks as a function of the

number of metadata bits. While further fidelity improvements are

obtained at granularities greater than 64, the fidelity loss for all

metadata types is reduced to under 15% at 32-bits. We conclude

that the hardware complexity for registry entries with greater than

64 bits is not justified by the potential benefit, and consider only

organizations that use 64-bits across access and dirty metadata

types.

Using fewer than 64 bits is desirable: extending TLB entries to

include additional metadata is less complex than introducing sep-

arate metadata caching hardware which must be kept coherent

with TLB entries and would require additional content-addressable

memories. Based on Figure 8, using 32-bits each for access and dirty

bits consumes 64 bits and reduces loss to 13% and 12%, respectively.

The combination of 16 each for access and dirty, requires 32 addi-

tional bits per TLB entry and reduces loss to about 20% for access

and dirty metadata. At the frugal end of the spectrum, we evaluate

augmenting the TLB with 16 access bits, and a single dirty bit.
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Figure 8: Harmonic mean spatial fidelity loss.



blackscholes fluidanimate canneal dedup raytrace facesim

MRE loads 0.00% (0.53%) 0.00% (8.20%) 0.05% (0.92%) 0.00% (0.30%) 0.00% (0.13%) 0.00% (0.19%)

+ MRE updates 0.04% (321.77%) 0.10% (2420.36%) 0.14% (2.64%) 0.10% (10.37%) 0.09% (118.69%) 0.02% (21.27%)

streamcluster x264 ferret gups redis graph500

MRE loads 0.00% (4.77%) 0.00% (0.19%) 0.00% (0.09%) 12.58% (24.03%) 0.03% (14.32%) 0.22% (42.00%)

+ MRE updates 0.01% (582.26%) 0.00% (4.76%) 0.00% (0.90%) 13.14% (25.09%) 0.66% (316.00%) 0.47% (90.56%)

Table 6: Performance impact of the metadata registry, reported in: % increase in total cycles ( % increase in page walker cycles).

6.2 Area, Power, Latency Impact

To evaluate the impact on TLB geometry and resource consump-

tion, we use CACTI [66] models of L1 2MB TLBs and L2 unified

TLBs based on the TLB parameters for Intel Skylake processors–32

entries (4-way associative) and 1536 entries (12-way associative)

respectively. Because CACTI supports only power-of-2 associativ-

ity, we round up to 16 for the L2 TLB model. Figure 9 shows access

latency, dynamic read energy, and total area for baseline Skylake-

like L1 and L2 TLBs as well as three designs that extend each entry

with additional metadata bits. The 32/32, 16/16, and 16/1 indicate

the number of access/dirty bits. The worst-case area growth and

access latency growth is around 5%, while the worst-case access

energy increases by about 9%.
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Figure 9: Relative L1 and L2 TLB access latency, read energy,

and area for various extended metadata capacities.

6.3 Memory Impact

To characterize memory overhead, we consider the total number

of 2M pages mapped by each application from Table 2. Metadata

registry entries are stored in the 4KB page immediately following

the level 3 page table page.

To compute a conservative lower bound on page table expansion,

we assume that all level 3 page table pages require subsequent

metadata registry pages. The average bloat over all benchmarks

using this estimate is about 1.2MB, while the maximum is 8.38MB.

6.4 CPU Performance

To estimate the performance impact of the Prism, we observe that

additional overheadswill arise from two operations: first, MRE loads

to construct extended TLB entries on a TLB miss, and second MRE

updates to set metadata bits. The first cause minor performance

loss since it is in the critical path of loading a TLB entry on a TLB

miss. The second does also impact performance slightly since most

of the metadata updates happen synchronously in our model. We

can reduce the impact of MRE updates by performing them in the

background asynchronously.

We pessimistically model both components of overheads and

include them as performance overheads (see §5 for more details).

To model MRE updates, we simulate an operating system (or hy-

pervisor) clearing the metadata bits once per second. Table 6 shows

slowdown across most benchmarks broken down by MRE loads/up-

dates. As we can see, except for GUPS, even a pessimistic model

of metadata registry performance results in an overhead of less

than 1%. GUPS spends more than 60% of its execution time in TLB

misses, and an increase in the TLB miss latency impacts it. We

exclude SPEC workloads in this table to conserve space, and they

do not show any specific new insights.

We conclude that with modest additions to the hardware, meta-

data fidelity loss can be reduced by about 50% on average relative

to page-granularity metadata bits, with a near-negligible impact on

performance.

6.5 Improving GPU Page Replacement

We demonstrate the performance benefit of Prism on GPGPU ap-

plications in over-subscribed memory conditions. Figure 10 shows

the normalized performance of Prism on 15 randomly selected

GPGPU applications compared to two baselines: baseline that uti-

lizes all 512 metadata bits per huge page, which is equivalent to

using 4KB mappings, and the other baseline that utilize 1 metadata

bit per huge page, which is identical to THP. Base on this result,

we provide four observations. First, the Prism-32bit configuration

provides 29.8% performance improvement on average over the 1-bit

metadata baseline while the Prism 8-bit configuration provides a

7.9% performance improvement over the 1-bit metadata baseline.

Second, Prism 8-bit only performs 1.8% worse, on average, com-

pared to the ideal 512-bit metadata baseline. Third, we observe that

while using 8 bits per huge page for metadata is sufficient in all

but one benchmark, the fidelity lost in SC leads to 75.4% perfor-

mance lost when only 8 bits of metadata is available, and 80.6%

performance lost when only 1-bit metadata is available. In con-

trast, Prism mitigates this performance loss by allowing the GPU to

adapt to various metadata granularity based on each application’s



tolerance toward fidelity loss. Fourth, we found that previously

proposed techniques to mitigate memory over-subscription [60, 99]

are not sufficient to mitigate the overhead of page eviction when a

huge page is used on multiple workloads (FWT, QTC, and SC) due to

the fidelity loss. In these cases, we found that the eviction policy

incorrectly evicts pages that are likely to be used again, leading

to severe performance degradation. In contrast, Prism allows the

page eviction policy to identify the correct pages to be evicted and

minimizes the performance overhead of demand paging in GPUs.
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Figure 10: GPU performance on a system with Prism nor-

malized to a baseline with 512-bit metadata granularity.

7 RELATEDWORK

Performance degradation from address translation overheads is

well-established [15–17, 20, 21, 34, 37, 52–54, 61, 63], and is exac-

erbated by hypervisor-based virtualization [4, 7, 17, 24, 34–36, 96].

Our work is related through the shared goal of reducing the trans-

lation overheads and by our own goal of reducing fidelity to loss to

better inform OS policy.

Larger page sizes have been used widely to reduce translation

overheads [31, 32, 43, 82, 92, 93]. Most modern processors like

x86-64, ARM, MIPS, ALPHA, PowerPC, and UltraSPARC support

multiple page sizes [49]. Navarro et al. [67] implement OS support

for multiple page sizes, and the ideas are widely used [27]. Gorman

et al. [39] propose a placement policy for an OS’s physical page

allocator that mitigates fragmentation and promotes contiguity.

Subsequent work [40] proposes a software-exposed interface for ap-

plications to explicitly request huge pages like libhugetlbfs [38].

More recently, there have been proposals for compact map-

pings [74, 75, 93] that map multiple pages with a single TLB entry,

improving TLB reach by a small factor (e.g., to 8 or 16); but much

greater improvements to TLB reach are needed to deal with mod-

ern memory sizes. Direct segments [15, 34] extend standard paging

with a large segment to map the majority of address space to a

contiguous physical memory region but require application modifi-

cations and are limited to workloads able to a single large segment.

Redundant memory mappings [7, 37, 52] extend TLB reach by map-

ping ranges of virtually and physically contiguous pages in a range

TLB.

Additionally, TLB miss overheads can be reduced by accelerating

page table walks [12, 14, 18] or reducing their frequency [33]; by

reducing the number of TLB misses (e.g. through prefetching [19,

21, 50, 81], prediction [7, 72], or structural change to the TLB [74,

75, 93], TLB hierarchy [4, 5, 15, 20, 34, 52, 61, 89]) or the page table

structure [2, 84, 85].

Many have observed problems with OS support for large

pages [8, 32, 43, 59, 67, 71, 93, 97]. Features in modern OSes such as

memory compaction, same-page merging [55], swapping, working

set prediction, and hotness detection [3] pose new challenges. Better

hardware support for larger page sizes or compact mappings ulti-

mately reduces translation overheads, which further incentivizes

their use. This, in turn, further exacerbates the need for finer-grain

metadata. Starting at Ice Lake, Intel added support for sub-page

write protection of Extended Page Table (EPT) pages. Permissions

are enforced on 128-byte boundaries and are controlled by a sepa-

rate page table and permissions vector. Though, this mechanism

does not currently support access or dirty bits [47].

Hardware support for prefetching can rely on spatial locality

and are related through architectural support for finer tracking of

spatial accesses. SMS [86] tracks spatial memory regions at 8KB

boundaries, but its prefetch-specific design relies on many tables

to track patterns and their history.

8 CONCLUSION

Metadata fidelity in the presence of multiple page sizes varies sig-

nificantly both spatially and temporally, across differing metadata

types, and both across and within individual workloads. Access

and dirty metadata have a high variance that is difficult to com-

pensate efficiently with uniform bit increases or software-based

strategies. The fidelity inherent in small page sizes for access and

dirty metadata can be recovered with modest additional hardware,

providing system software with much-needed visibility to improve

performance.
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