
Differentiating Cache Files for Fine-grain Management to Improve Mobile
Performance and Lifetime

Yu Liang†, Jinheng Li†, Xianzhang Chen∗, Rachata Ausavarungnirun‡, Riwei Pan†, Tei-Wei Kuo†§, Chun Jason Xue†
† Department of Computer Science, City University of Hong Kong

∗ College of Computer Science, Chongqing University
‡ TGGS, King Mongkut’s University of Technology North Bangkok

§ Department of Computer Science and Information Engineering, National Taiwan University

Abstract

Most mobile applications need to download data from the
network. The Android system temporarily stores these data as
cache files in the local flash storage to improve their re-access
performance. For example, using Facebook for two hours in
one case generated 1.2GB cache files. Writing all cache files
to the flash storage has a negative impact on the overall I/O
performance and deteriorates the lifetime of mobile flash stor-
age. In this paper, we analyze the access characteristics of
cache files of typical mobile applications. Our observations
reveal that the access patterns of caches files are different
from application-level to file-level. While existing solutions
treat all cache files equally, this paper differentiates cache
files into three categories, burn-after-reading, transient, and
long-living. A Fine-grain Cache File Management (FCFM)
framework is proposed to manage different cache files differ-
ently to improve the performance and lifetime of the mobile
system. Evaluations using YouTube show that FCFM can
significantly improve the performance and lifetime of mobile
devices.

1 Introduction

Mobile devices have become increasingly important in our
daily lives. In 2019, the number of worldwide smartphone
users surpasses three billions and Android smartphones ac-
count for 80% of the sales [15]. Performance and lifetime of
the mobile device are two key metrics of a mobile device [6–
9, 16]. Currently, mobile systems store all the temporary data
downloaded by mobile applications as cache files in the local
flash storage. As a result, existing mobile applications gener-
ate heavy writes to the flash storage. For example, in one case,
Facebook generated more than 1GB of data and 13000 writes
in two hours. Such high number of writes not only damages
the lifetime of the flash storage but also leads to many I/Os to
the mobile system, potentially lowering performance. Hence,

∗Corresponding author. Email: xzchen@cqu.edu.cn

a fundamental question is that can we improve the existing
cache file management for mobile devices?

The benefit of storing the cache files in the flash storage is
based on an implicit assumption: the cached files are going to
be accessed again often and for a long time. In this paper, we
examine this assumption by tracing the cache file accesses of
ten widely-used mobile applications, covering social media,
map-related apps, games, video apps, and browsers. Then, we
analyze the collected traces from the perspective of read/write
amount, the number of files, and read operations. Our obser-
vations reveal that the assumption that the cached files are
going to be accessed again does not hold on lots of cache
files across multiple applications. In fact, the characteristics
of cache file accesses vary greatly for each application and
each individual file.

Based on our observations, this paper advocates that cache
files should not be treated equally in mobile devices. This
paper differentiates cache files and proposes a Fine-grain
Cache File Management (FCFM) framework to improve the
performance and lifetime of the mobile devices. FCFM adopts
a filter to differentiates cache files and stores them in the main
memory and the flash storage by an in-memory file system
and a flash file system, respectively. The filter categorizes
the cache files into three types, burn-after-reading (BAR),
Transient, and Long-living, according to the access patterns
on cache files. FCFM stores BAR files and Transient files in
main memory using in-memory file system and discards them
when the memory is running out of space. The Long-living
files are stored in the flash storage to speedup the re-accesses.

We evaluate the proposed FCFM in Android using
YouTube. FCFM adopts RAMFS [12] and F2FS [10] as the
hybrid storage. The experimental results show that compared
to the existing cache file management, FCFM can reduce the
write amount and the number of writes by 93% and 65%, re-
spectively. The contribution of this paper is listed as follows.

• We investigate the access patterns of cache files of mo-
bile applications and find that the existing cache file
management may have negative impact on the perfor-



mance and lifetime of the mobile devices;

• We propose a Fine-grain Cache File Management
(FCFM) to optimize the performance and lifetime of
mobile devices utilizing the observed access patterns of
cache files;

• We verify the effectiveness of FCFM over existing solu-
tions in the Android system.

2 Backgrounds

Data access performance is a key metric for mobile devices
that directly affects user experience, such as displaying news
feeds and watching videos. These data generally come from
two sources: the network and the local storage. Different
from servers (excluding cache servers [13]), most mobile
applications download fresh data such as news and videos
from the network. Because the bandwidths of networks are
different based on different networks, e.g., the Verizon 4G
LTE wireless broadband provides download speeds between
5 and 12 Mbps (0.652 and 1.5 MB/s) [17], most applications
typically store the downloaded temporary data as cache files
in the mobile device to minimize data transfers across the
network and improve performance.

Figure 1: Framework of cache file read in Android system.

Existing Android systems first store the cache files in the
main memory, and then write them back to the flash storage,
as shown in Figure 1. When an application accesses a page of
a cache file that is located in the main memory, the through-
put can reach 25.6 GB/s 1. If the requested page is not in
the main memory, the read request is delivered to the flash
storage. The data access bandwidths are hundreds of times
lower than accessing the files in the main memory, such as
39.3 MB/s and 272.2 MB/s for random read and sequential
read, respectively [1].

Another important metric for mobile devices is lifetime.
With the increasing memory and hardware performance,
the replacement cycle length of mobile devices has also in-
creased [16]. The NAND flash storage widely adopted in
mobile devices suffers from limited write/erase cycles. It is
crucial to improve the lifetime of smartphones by reducing
the write amount to the flash storage.

1This data is verified with the tool DevCheck [5].

3 Cache File Analysis

Existing file systems apply the same strategy to manage the
cache files with an implicit assumption that all the cache files
are equal. However, this paper shows that the accesses to
cache files vary greatly from application-level, file-level, and
pattern-level.

Ten commonly-used apps, including social media, map,
game, video, and browser, are used to characterize cache files
on Android. The workloads of the apps are listed in Table 1.
Similar workloads are also used in work [11].

Table 1: Workloads of applications.

Type Applications Workloads

FacebookSocial media
Twitter

View news: (a) drag the screen to
load news; (b) load the news for
displaying; (c) repeat (a) and (b).

Map

Search address: (a) type key words;
(b) load the news for displaying; (c)
drag the screen, zoom in and zoom
out the map; (d) repeat (a) (b) and (c).

Map Earth
Scan satellite maps: (a) drag the
screen, zoom in and zoom out the
map; (b) repeat (a).

CandyCrush Load and play CandyCrush.Game Zombie Load and play Plants vs. Zombies.

Youtube
Play series: (a) type key words;
(b) load the news for displaying;
(c) autoplay long series.

Video TikTok
Play vedios: (a) drag the screen to
load news; (b) play short vedio;
(c) repeat (a) and (b).

ChromeBrowser
FireFox

Search news: (a) type key words;
(b) load the news for displaying;
(c) repeat (a) and (b).

All the experiments are conducted on a Huawei P9 smart-
phone equipped with an ARM Cortex-A72 CPU, 32GB in-
ternal flash memory and 3GB RAM. The smartphone runs
Android 7.0 with Linux kernel version 4.1.18. We instrument
the Android kernel source code and use the Android Debug
Bridge (adb) tool [4] to obtain read, write, lifetime, and file
size information of cache files. From the conducted experi-
ments, we uncover several unexpected observations.

We track the read and write information of cache files in
the flash storage using the function submit_bio() in block/blk-
core.c. Each application has its default cache folder in the
path /data/packageName/cache, which is private to the ap-
plication itself. Some applications store cache files in /me-
dia/0/Android/data/packageName/cache, which is accessible
to other applications. We collect read and write statistics on
both paths.

3.1 Cache Access Patterns of Applications
We summarize the read amount and the write amount of dif-
ferent applications in Table 2. “Read” represents the read
amount on all the cache files in the flash storage when using



each application for two hours. “W/R” represents the ratio of
write amount over read amount.

Table 2: Read and write amount on cache files in flash storage.

Type Applications Read (MB) Write (MB) W/R

Social
media

Facebook 8.9 1203.6 134.5
Twitter 21.5 525.5 24.5

Map Map 6.7 141.5 21.2
Earth 210.4 931.5 4.4

Game CandyCrush 8.6 3.0 0.3
Zombies 30.8 92.7 3.0

Video YouTube 1.3 800.3 638.2
TikTok 8.0 1040.4 129.7

Browser Chrome 14.8 276.8 18.7
Firefox 10.8 289.6 26.7

As Table 2 shows, the read amount and the write amount of
different applications are quite different. For example, social
media applications write hundreds to thousands of cache file
data, whereas the game applications only access less than
150MB cache file data in total. At the same time, the applica-
tions also show different Write/Read ratios. For example, the
W/R ratio of YouTube is 34.1× that of Chrome. In summary,
the following observations are drawn:

Observation 1. The cache file accesses of different types of
applications vary greatly in terms of the total data amount
and the Write/Read (W/R) ratio.

The discrepancy between different types of applications is
determined by the intrinsic logic of the applications. For ex-
ample, most data of a game is fixed data rather than temporary
data. On the contrary, most data of social media and video
applications are fresh information obtained from the network,
which are subsequently treated as cache files to accelerate the
possible future accesses.

Observation 1 indicates that if we find out the access pattern
of cache files following the intrinsic logic of applications,
mobile devices can improve system performance and lifetime
by managing the cache files judiciously.

Observation 2. On average, the write amount of cache files
is 100X more than the read amount.

Observation 2 reveals that for most applications, most of
their cache files are rarely re-used. In this case, there exists
huge potential to improve system performance and lifetime
by discarding rarely accessed cache files. To construct bet-
ter management for the cache files, we further exploit the
characteristics of cache files at file level.

3.2 Cache-File Characteristics
We analyze the characteristics of cache files for each applica-
tion from three perspectives: the amount of file accesses, the
lifetime of cache files, and the file size. The CDF of read and
write amount ratio of the cache files for each application is
shown in Figure 2a and Figure 2b, respectively. We order the
cache files according to their read/write amount.

Observation 3: Most of the reads of the applications are
concentrated on a few cache files.

According to observation 3, it is beneficial to reduce write
amount on the flash storage by discarding most of the cache
files that are rarely accessed again. However, there may be
rarely-accessed large files which are accessed again. Suppose
the system simply discards such files, it may degrade the
system performance since the mobile device has to search
and download these files from the network to satisfy the data
read requests of the application. Thus, we further exploit the
connection between read amount, lifetime of files, and file
sizes of cache files.

The lifetime of a file is calculated by subtracting its creation
time from the time it is deleted. The collected data of each
application is shown in Figure 2. The histogram represents the
number of files with the same lifetime. The numbers above
the histograms are the read amount of these cache files. The
line chart represents the total size of the files with the same
lifetime. To investigate the lifetime of cache files, applications
are used daily for several days before collecting data. Since
we only run experiments for two hours, all the long-lifetime
(more than 2 hours) cache files were generated in the last few
days while other files were generated during experiments.

As shown in Figure 2 (b)-(k), except for CandyCrush and
Google Map, applications store more than 50% of their cache
files at least one day. Meanwhile, the blue lines indicate that
these long-lifetime files also account for more than 50% of the
total size of the cache files in these applications. Furthermore,
except for YouTube and CandyCrush, more than 90% of the
read amounts of applications focus on the cache files stored at
least one day. In summary, we have the following observation:

Observation 4: For most applications, most of the reads
are conducted on the long-lifetime cache files. Moreover, the
total size of these files is more than 50% of the total size of
all the application’s cache files.

According to observation 4, suppose the system discards
the short-lifetime cache files and stores the long-lifetime
cache files in the flash storage, it is possible to halve the
writes on flash storage with small performance cost. If the
long-lifetime cache files stay in memory when it is read, its
access performance can be further improved. Since choosing
files to put in memory needs to consider their read patterns,
we exploit the read patterns of cache files.

3.3 Read Patterns of Cache Files

To show the read pattern of read-intensive files, we order the
cache files according to their read amount. Figure 3 shows
the read patterns of the ten most-read cache files of each ap-
plication, where the selected cache files in each application
are displayed by ten colors. Since many read operations upon
a single file could happen in a short period of time, we merge
the number of reads of a file in every 80 seconds. Thus, larger
circles represent more reads in this period. Each frame repre-



0

20

40

60

80

100

1 16 31 46 61 76 91 10
6

12
1

13
6

15
1

16
6

18
1

19
6

21
1

22
6

24
1

25
6

27
1

28
6

C
D

F 
o

f 
re

ad
 a

m
o

u
n

t r
at

io
 (

%
)

Index of ordered files

Chrome Firefox Facebook Twitter
CnadyCrush Zombie Map Earth
Youtube TikTok

(a) CDF of read amount ratio of cache files.

0

20

40

60

80

100

1

15 29 43 57 71 85 99

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

C
D

F 
o

f 
w

ri
te

 a
m

o
u

n
t r

at
io

 (
%

)

Index of ordered files

Chrome Firefox Facebook Twitter
CandyCrush Zombie Map Earth
Youtube TikTok

(b) CDF of write amount ratio of cache files.

0 0 0 0 0
0

0

0 0 0

0

15432KB

0

50

100

150

200

250

300

350

0

500

1000

1500

2000

2500

3000

10
m

s

50
0m

s 5s 15
s

30
s

1m
in

10
m

in

30
m

in 1h 2h

1d
ay

lo
n

ge
r

Si
ze

 o
f 

fi
le

s 
(M

B
)

Fi
le

 n
u

m
b

er

Lifetime of files

File number

Size of files

(c) Cache file features of Chrome.

0 0 0
24KB

4KB
0 0

0 0 0

48KB
900KB

0

20

40

60

80

100

0

200

400

600

800

1000

1200

10
m

s

50
0m

s 5s 15
s

30
s

1m
in

10
m

in

30
m

in 1h 2h

1d
ay

lo
n

ge
r

Si
ze

 o
f 

fi
le

s 
(M

B
)

Fi
le

 n
u

m
b

er

Lifetime of files

File number

Size of files

(d) Cache file features of Firefox.

0 0 0 0
0 0

0

0

0

0

0

1584KB

0

100

200

300

400

0

500

1000

1500

2000

2500

3000

3500

4000

10
m

s

50
0m

s 5s 15
s

30
s

1m
in

10
m

in

30
m

in 1h 2h

1d
ay

lo
n

ge
r

Si
ze

 o
f 

fi
le

s 
(M

B
)

Fi
le

 n
u

m
b

er

Lifetime of files

File number

Size of files

(e) Cache file features of Twitter.

1 0 4KB 0 0 0 0 0 0 0 0

2324KB

0

200

400

600

800

1000

1200

1400

0

2000

4000

6000

8000

10000

12000

10
m

s

50
0m

s 5s 15
s

30
s

1m
in

10
m

in

30
m

in 1h 2h

1d
ay

lo
n

ge
r

Si
ze

 o
f 

fi
le

s 
(M

B
)

Fi
le

 n
u

m
b

er

Lifetime of files

File number

Size of files

(f) Cache file features of Facebook.

0 0 0 0

0

0 0 0 0 0
0

8420KB

0

200

400

600

800

1000

0

800

1600

2400

3200

4000

10
m

s

50
0m

s 5s 15
s

30
s

1m
in

10
m

in

30
m

in 1h 2h

1d
ay

lo
n

ge
r

Si
ze

 o
f 

fi
le

s 
(M

B
)

Fi
le

 n
u

m
b

er

Lifetime of files

File number

Size of files

(g) Cache file features of TikTok.

0 0 0 0 0 28KB
0 0 0

0

0

36KB

0

200

400

600

800

1000

0

500

1000

1500

2000

10
m

s

50
0m

s 5s 15
s

30
s

1m
in

10
m

in

30
m

in 1h 2h

1d
ay

lo
n

ge
r

Si
ze

 o
f 

fi
le

s 
(M

B
)

Fi
le

 n
u

m
b

er

Lifetime of files

File number

Size of files

(h) Cache file features of Youtube.

0 0
0

0

8KB
0

96KB

92KB

92KB
92KB

112KB

724KB

0

20

40

60

80

100

0

200

400

600

800

1000

10
m

s

50
0m

s 5s 15
s

30
s

1m
in

10
m

in

30
m

in 1h 2h

1d
ay

lo
n

ge
r

Si
ze

 o
f 

fi
le

s 
(M

B
)

Fi
le

 n
u

m
b

er

Lifetime of files

File number

Size of files

(i) Cache file features of CnadyCrush.

0 0 0

0

8KB

0

0 8KB

0
0

624KB

8608KB

0

20

40

60

80

100

0

100

200

300

400

500

600

10
m

s

50
0m

s 5s 15
s

30
s

1m
in

10
m

in

30
m

in 1h 2h

1d
ay

lo
n

ge
r

Si
ze

 o
f 

fi
le

s 
(M

B
)

Fi
le

 n
u

m
b

er

Lifetime of files

File number

Size of files

(j) Cache file features of Plant vs Zombie.

0 0 0
0

0
0

0

0

0

0

0

1756KB

0

20

40

60

80

100

0

500

1000

1500

2000

2500

3000

3500

10
m

s

50
0m

s 5s 15
s

30
s

1m
in

10
m

in

30
m

in 1h 2h

1d
ay

lo
n

ge
r

Si
ze

 o
f 

fi
le

s 
(M

B
)

Fi
le

 n
u

m
b

er

Lifetime of files

File number

Size of files

(k) Cache file features of Google Map.

0 0 0
0 0

0

0
0 0 0

0

764KB

0

5

10

15

20

0

100

200

300

400

500

600

10
m

s

50
0m

s 5s 15
s

30
s

1m
in

10
m

in

30
m

in 1h 2h

1d
ay

lo
n

ge
r

Si
ze

 o
f 

fi
le

s 
(M

B
)

Fi
le

 n
u

m
b

er

Lifetime of files

File number

Size of files

(l) Cache file features of Google Earth.

Figure 2: Characterizing cache files in four dimensions: read, write, lifetime, and file size.

sents an application. Based on Figure 3, we have the following
observation:

Observation 5: From the temporal perspective, the cache
files basically show two types of read patterns: the files with
concentrated reads in a short time period and the files are
contiguously read across the application execution time.

For the cache files have highly concentrated reads, such as
the file 0 in Zombie, suppose the system keeps the data of such
a cache file in the memory, the system performance can be
improved by eliminating many I/O operations. For the cache
files that have scattered reads across the app execution time,

such as file 0 in Twitter and Google Map, it is not necessary
to store all of these files in the memory since there are gaps
of hundreds of seconds between the accesses.

In summary, we show that not all cache files are equal at
application level, file level, and pattern level. However, the
existing Android system is unaware of the uneven character
of cache files and stores all the cache files in the local storage,
which not only degrades the system performance but also
damages the lifetime of the mobile devices. We believe that
it is necessary to store cache files in both memory and flash
storage to improve the system performance and lifetime. Fur-



Figure 3: Read pattern of cache files for each application.

thermore, we should revisit the management of cache files to
fully exploit the per-application and per-file access patterns.

4 Fine-grain Cache File Management

Based on the observations, we present a Fine-grain Cache
File Management (FCFM) framework to improve the per-
formance and lifetime of mobile devices by exploiting the
characteristics of cache files. Figure 4 shows the proposed
FCFM.

Figure 4: Framework of FCFM.

Different from existing solutions, FCFM maintains cache
files in main memory and flash storage hybrid architecture.
Aside from the flash file system for the flash storage, FCFM
employs an in-memory file system, such as RAMFS [12] and
TMPFS [14] to manage the cache files in main memory. The
cache files belonging to the flash file system will be written

back to the flash storage, whereas the cache files in the in-
memory file system will be discarded. Thus, it is important
to determine the placement of cache files in these two file
systems.

Then, we propose a filter to determine the placement of
cache files by exploiting their characteristics. The proposed
filter divides cache files into three categories:

Burn-After-Reading (BAR): The cache files that have a
large write amount but a tiny read amount. When an applica-
tion closes a BAR cache file, the system will directly discard
the file, i.e., delete it from the in-memory file system. If the
application tries to access the file again, the application should
download it from the network. Discarding the BAR files is
expected to have inconspicuous damage to the system perfor-
mance since the read amounts of BAR files are small.

Transient: The cache files that have a large write amount
and a large read amount as well as a short active period. FCFM
also stores the transient cache files in the main memory by an
in-memory file system. In the case of memory running out of
space, the system will first discard the BAR files, then delete
the transient files using an LRU algorithm. Discarding the
transient cache files using LRU is expected to have negligi-
ble damage to the system performance since they are rarely
accessed after the active period.

Long-living: The rest of the cache files, especially those
have large read amount and long active period. Storing the
long-living files in the flash storage can avoid the high cost
for fetching them from the network again.

According to observation 2 and observation 3 in Section 3,
when the system employs the filter to place the cache files, it
is expected to significantly improve the lifetime of the mobile
device since only the long-living cache files are written back
to the flash storage. Meanwhile, the system performance will
be improved since the BAR files and Transient files are all
directly accessed in the main memory.

5 Evaluation and Analysis

In this section, we conduct a set of experiments on YouTube
to verify the effectiveness and feasibility of FCFM. In the
experiments, we use RAMFS [12] and F2FS [10] as the in-
memory file system and the flash file system, respectively.

We collect and analyze the data access information of
YouTube on the cache files. Video cache files account for
93% of the total cache files of YouTube. Hence, we choose
these cache files as target files of the experiments. We find
that most of the video cache files, about 98%, are never read
again once they are written back to the flash storage. Accord-
ing to the definition of three categories, the filter regards the
video cache files as BAR files. We compare the FCFM with
two baselines: 1) Fully-in-memory: which stores all the target
cache files in RAMFS [2, 3]; 2) Fully-in-flash: the existing
management of Android that stores all the target cache files in
the flash storage. To implement the case of fully-in-memory,



we mount /cache/exo path to RAMFS. The evaluation results
are shown in Table 3.

Table 3: Comparing FCFM with two baselines for video cache
files of YouTube.

Categories Write amount Number of writes cache/exo read

Fully-in-memory 71MB 5757 60KB from memory
Fully-in-flash 345MB 5000 60KB from storage

FCFM 24MB 1736 60KB from network

The results show that the total write amount of cache files
into flash storage in FCFM is 66% and 93% less than that of
the fully-in-memory and fully-in-storage mechanism, respec-
tively. The total write amount in fully-in-memory mechanism
is 79% smaller than that in fully-in-storage mechanism be-
cause the targeted files are not written back into flash storage
but are stored in memory. However, taking up memory space
makes the other applications share a smaller memory space,
and thus the number of writes of the flash storage in fully-in-
memory mechanism is increased by 15% due to additional
evict operations. The number of writes of the flash storage in
FCFM is 65% and 70% less than that of the fully-in-memory
and fully-in-storage mechanism, respectively because its tar-
get cache files are discarded. In a word, FCFM can largely
reduce the number and amount of writes in flash storage.

The writes of cache files into flash storage could compete
with other user I/Os and thus degrade the I/O performance
of mobile devices. Moreover, when the written-back data is
deleted, Garbage Collection (GC) will be triggered to reclaim
the free space and thus the lifetime of mobile devices will be
reduced. Thus, reduce the number of writes and write amount
of cache files is very important to mobile devices.

Notably, there are 2% of video cache data will be reused
and need to be downloaded from network again because they
are discarded. Moreover, an incorrect classification could
cause additional overhead (including latency, energy, and
money) to use additional network bandwidth to bring un-
cached data back. Thus, the penalty of FCFM depends on the
accuracy of classification. If the classification is accurate, the
penalty is very small (re-downloading 2% cache data).

6 Conclusion

To improve the re-access performance of downloaded data,
the current Android system temporarily stores cache files for
applications. This paper investigated the access patterns of
the cache files by tracing and analyzing the file accesses of
representative mobile applications. Based on the analysis, we
observe that the mobile system should treat cache files differ-
ently as each cache files could exhibit very different access
patterns. Thus, we proposed a Fine-grain Cache File Manage-
ment (FCFM) framework to properly place the cache files in
the in-memory file system or the flash file system according
to their access patterns. The evaluation results showed that

FCFM can significantly improve the performance and lifetime
of mobile devices.

7 Discussion Topics

The proposed Fine-grain Cache File Management (FCFM)
framework has three main challenges that need to be dis-
cussed.

Topic 1: How to systemically categorize cache files. In
FCFM, all cache files should be categorized into three classes
according to their characteristics (read, write, file size, and
lifetime). When a cache file is downloaded, the system does
not know its exact characteristics. One direction is to analyze
each type of cache file based on its extension. For example,
we find that .exo files produced by YouTube usually have a
long lifetime (longer than one day) and will not be read again.
This type of files can be categorized as BAR class. While
the .db files produced by Map usually have a long lifetime
(longer than one day) and will be read a lot. Moreover, the
read operations are scattered over time. This type of files
should be stored in the storage.

Topic 2: How much RAM should be used for the in-
memory file system. There is a trade-off between the RAM
size of the in-memory file system and the performance of the
whole system. The in-memory file system with more RAM
can store more cache files, which improves the cache file
access performance. On the other hand, the in-memory file
system competes for memory with the applications and the
OS. A larger in-memory file system may lower the overall
performance of the mobile device. Moreover, the amounts
of cache files that need to be stored in memory vary across
applications. For some applications, there is a maximum size
for cache files. For example, YouTube configures 250MB
maximum size for the exo folder. The system may set a maxi-
mum size for the in-memory file system of these applications.
While for other applications, such as Facebook, the cache file
could be increased without a preset limitation. Thus, some
files will be discarded when the in-memory file system is full.

Topic 3: Cache file eviction scheme. An LRU based evic-
tion scheme is used in current Android systems. However, a
page-based evict scheme is not suitable for cache file eviction
because when a page of a file is evicted and discarded, the
whole file is invalid. A file-based eviction scheme will be
more suitable for the file discard from in-memory file system.
The file-base evict scheme needs to consider the read pattern,
file size, and lifetime of the files.

Acknowledgment

This paper was partially supported by a grant from the Re-
search Grants Council of the Hong Kong Special Administra-
tive Region, China (11204718) and National Natural Science
Foundation of China under Grant No. 61802038.



References

[1] ENGINEER, A. Huawei p9 read performance. https://
www.mobigyaan.com/huawei-p9-review-is-it-the-
ultimate-phone-camera, 2017.

[2] ENGINEER, A. How to mount a folder directly into
the ram? https://wp-rocket.me/blog/mount-folder-ram/,
2019.

[3] ENGINEER, A. How to improve your computer perfor-
mance and ssd life span with a ram disk. https://www.
softperfect.com/articles/how-to-boost-computer-
performance-with-ramdisk/, 2020.

[4] ENGINEERS. Android debug bridge (adb) tool. https:
//androidmtk.com/download-minimal-adb-and-
fastboot-tool, 2019.

[5] FLAR2. Devcheck hardware and system info.
https://play.google.com/store/apps/details?id=flar2.dev
checkhl=zh, 2020.

[6] HAHN, S. S., LEE, S., YEE, I., RYU, D., AND KIM,
J. Fasttrack: Foreground app-aware i/o management for
improving user experience of android smartphones. In
2018 USENIX Annual Technical Conference (USENIX
ATC 18) (2018), pp. 15–28.

[7] JEONG, D., LEE, Y., AND KIM, J.-S. Boosting quasi-
asynchronous i/o for better responsiveness in mobile
devices. In Proceedings of the 13th USENIX Conference
on File and Storage Technologies (2015), pp. 191–202.

[8] JEONG, S., LEE, K., LEE, S., SON, S., AND WON, Y.
I/o stack optimization for smartphones. In Proceedings
of USENIX Annual Technical Conference (ATC) (2013),
pp. 309–320.

[9] KIM, S.-H., JEONG, J., AND KIM, J.-S. Application-
aware swapping for mobile systems. ACM Trans. Em-

bed. Comput. Syst. 16, 5s (Sept. 2017), 182:1–182:19.
[10] LEE, C., SIM, D., HWANG, J., AND CHO, S. F2fs:

A new file system for flash storage. In 13th USENIX
Conference on File and Storage Technologies (FAST 15)
(2015), pp. 273–286.

[11] LIANG, Y., PAN, R., YAJUAN, D., FU, C., SHI, L.,
KUO, T.-W., AND XUE, C. Read-ahead efficiency on
mobile devices: Observation, characterization, and op-
timization. IEEE Transactions on Computers PP (04
2020), 1–1.

[12] MCKUSICK, M. K., KARELS, M. J., AND BOSTIC,
K. A pageable memory based filesystem. In USENIX
Summer (1990).

[13] SHEN, Z., CHEN, F., JIA, Y., AND SHAO, Z. Dida-
cache: A deep integration of device and application for
flash based key-value caching. In 15th USENIX Confer-
ence on File and Storage Technologies (FAST 17) (Santa
Clara, CA, Feb. 2017), USENIX Association, pp. 391–
405.

[14] SNYDER, P. tmpfs: A virtual memory file system. In In
Proceedings of the Autumn 1990 European UNIX Users’
Group Conference (1990), pp. 241–248.

[15] STATISTA. Number of smartphone users worldwide
from 2016 to 2021. https://www.statista.com/statistics/
330695/number-of-smartphone-users-worldwide/,
2020.

[16] STATISTA. Replacement cycle length of smartphones
worldwide. https://www.statista.com/statistics/786876
/replacement-cycle-length-of-smartphones-
worldwide/, 2020.

[17] VERIZON. 4g lte speeds vs. your home network. https://
www.verizonwireless.com/articles/4g-lte-speeds-vs-
your-home-network/.


	Introduction
	Backgrounds
	Cache File Analysis
	Cache Access Patterns of Applications
	Cache-File Characteristics
	Read Patterns of Cache Files

	Fine-grain Cache File Management
	Evaluation and Analysis
	Conclusion
	Discussion Topics

