
Acclaim: Adaptive Memory Reclaim to Improve User Experience
in Android Systems

Yu Liang1, Jinheng Li1, Rachata Ausavarungnirun2, Riwei Pan1, Liang Shi3, Tei-Wei Kuo14, Chun Jason Xue1

1 Department of Computer Science, City University of Hong Kong
2 TGGS, King Mongkut’s University of Technology North Bangkok

3 School of Computer Science and Technology, East China Normal University
4 Department of Computer Science and Information Engineering, National Taiwan University

Abstract
While the Linux memory reclaim scheme is designed to

deliver high throughput in server workloads, the scheme be-
comes inefficient on mobile device workloads. Through care-
fully designed experiments, this paper shows that the current
memory reclaim scheme cannot deliver its desired perfor-
mance due to two key reasons: page re-fault, which occurs
when an evicted page is demanded again soon after, and di-
rect reclaim, which occurs when the system needs to free up
pages upon request time. Unlike the server workload where
the direct reclaim happens infrequently, multiple direct re-
claims can happen in many common Android use cases. We
provide further analysis that identifies the major sources of
the high number of page re-faults and direct reclaims and pro-
pose Acclaim, a foreground aware and size-sensitive reclaim
scheme. Acclaim consists of two parts: foreground aware evic-
tion (FAE) and lightweight prediction-based reclaim scheme
(LWP). FAE is used to relocate free pages from background
applications to foreground applications. While LWP dynami-
cally tunes the size and the amount of background reclaims
according to the predicted allocation workloads. Experimen-
tal results show Acclaim can significantly reduce the number
of page re-faults and direct reclaims with low overheads and
delivers better user experiences for mobile devices.

1 Introduction

With many optimizations to Linux’s memory reclaim scheme,
the existing Linux memory reclaim scheme can efficiently
manage pages inside the main memory in desktops and
servers [6, 11, 14, 17]. Android mobile devices, which have
seen remarkable growth, inherit the same Linux kernel de-
signed for desktops and servers. As a result, these mobile
devices utilize the same memory reclaim scheme inherited
from Linux desktop and server distributions.

In this work, we show that the nature of mobile devices
workloads is fundamentally different from those of desktop
and server workloads. Hence, policies designed to improve
the efficiency of the memory reclaim scheme in desktops and

servers fail to deliver similar efficiency on mobile devices.
Specifically, we observe that a slow page reclaim procedure
and severe page thrashing can severely degrade the perfor-
mance of Android applications. One of the key reason behind
this performance degradation is page re-fault, which is a page
fault that happens on a previously evicted page. This page
re-fault can become a bottleneck and lower workloads’ read
performance because the system now needs to read the page
from the storage instead of the much faster main memory,
leading to 100x or more increase in page read latency. An-
other key reason behind performance degradation is direct
reclaim. Direct reclaim can negatively impact performance
because any page allocations must wait for the direct reclaim
process to finish. During a direct reclaim operation, many
dirty pages may need to be flushed and thus greatly prolong
the allocation procedure. To avoid costly direct reclaim op-
eration, an alternative reclaim scheme using the lightweight
background reclaim (kswapd), is used by the Linux system.
Kswapd is a kernel thread that is wakened up periodically
or by page allocation to reclaim free pages. However, in the
current Android kernel, we observe that kswapd takes too
long to free up the necessary number of pages and thus direct
reclaim has to be triggered.

Through experiments using popular mobile applications,
we show that the current Android memory reclaim scheme
does not adapt to the characteristics of Android applications.
Experiments show that even when launching one small-size
application, page re-faults could happen regularly. Under a
set of common use cases, 31% of all the evicted pages are
page re-faults. This high ratio of page re-faults to normal page
evictions means that page thrashing is very severe in modern
Android mobile devices. Aside from the high rate of page re-
faults, our experiments also show that the percentage of direct
reclaims in all reclaims is 0.8% on average under common use
cases. Once direct reclaim happens, up to 1024 dirty pages
will be flushed to flash storage, which dramatically extends
the latency of the page allocation. Thus, direct reclaim should
be avoided.

Prior researches focused on reducing the number of page

faults by optimizing page eviction algorithms on mobile de-
vices [32, 40]. These previously-proposed eviction algorithms
treat the pages of background and foreground applications
with the same priority and choose victim pages according to
their access time and the frequency of accesses. The optimized
LRU is known as a good eviction algorithm and is applied in
Android [2]. To avoid direct reclaim, the Android operating
system reserves some free pages by setting watermarks for
free memory. This additional free pages can prevent direct
reclaim from being triggered if there is a sudden and urgent
heavy allocation. However, our experimental results show that
the number of direct reclaims is still surprisingly high (could
be triggered 96 times in five minutes in one common use
case) on Android mobile devices. To reduce the long latency
of memory allocation caused by poor insight of mobile OSes,
Marvin [28] implements most memory managements in the
language runtime, which has more insight into an app’s mem-
ory usage. However, Marvin misses the opportunities at the
OS level, e.g. taking into account the foreground/background
states of applications to predict applications’ allocation.

In this paper, we observe that under certain user behaviors,
page re-fault depends on the amount of available memory,
while the direct reclaim depends on both the amount of avail-
able memory and the latency of background reclaims. Based
on these observations, we uncover two main causes that lead
to a high rate of page re-faults and direct reclaims on mobile
devices. First, background applications are not truly inactive
but their reduced activities and unevicted pages still create
high memory pressure, penalizing the foreground application
in an unfair way. Furthermore, low memory killer (LMK) [1]
does not help much. Second, we found that the large-size
reclaim, which is suitable for desktop and servers as the large-
size reclaim amortizes the long latency of each direct reclaim
process, is overly aggressive and coarse-grained for Android
because 1) it prolongs the latency of the background reclaim
and negatively impacts the user experience and 2) Android
workloads typically issue page allocation requests that are
much smaller compared to desktop and server requests.

Based on these two main causes, we propose Acclaim, a
foreground aware and size-sensitive reclaim scheme. Acclaim
consists of two major runtime components: foreground aware
eviction (FAE) and a lightweight, prediction-based reclaim
scheme (LWP). FAE relocates free pages from background
applications to foreground applications; it does so by lowering
the priorities of the pages belonging to background applica-
tions during page eviction. LWP tunes the sizes and amounts
of background reclaims based on its prediction of allocation
workloads. Evaluation results show that Acclaim benefits I/O-
intensive phases in application execution, notably application
launch and application installation, which are known crucial
to mobile user experience [8].

The contribution of this paper is listed as follows.

• This work reveals that the current memory reclaim
scheme fails to deliver a good page re-fault ratio (of

up to 31%) and frequency of direct reclaims (of up to 96
times when using only one foreground application for
five minutes) on Android mobile devices.

• We analyze the root causes of the inefficient memory
reclaim scheme on mobile devices and propose Acclaim,
a foreground aware and size-sensitive reclaim scheme,
to improve the performance.

• We conduct a survey to collect the usage information
of applications through deploying our monitoring ap-
plication on fifty-two real mobile devices. We evaluate
Acclaim according to our survey. The experimental re-
sults on a real mobile device show that the performance
improves in most use cases.

2 Background

To analyze the latency bottleneck of Android mobile devices,
we first look at how Android read a page of data.

2.1 Android I/O Latency
Android is a Linux-based lightweight operating system de-
signed for mobile devices. Figure 1 shows the architecture
of Android I/O stack that including the userspace, the Linux
kernel, and the I/O devices.

File Systems

Generic Block Layer

I/O Scheduler Layer

Flash Storage

Applications

Kern
el

D
evice

U
ser

Page Cache

VFS Layer

Figure 1: An overview of the Android I/O stack.

We use a read operation as an example to show the la-
tency bottleneck. When an application reads a page in the
I/O stack, the application sends a read request to the kernel.
The kernel then searches the page cache to see whether the
requested page is in the page cache or not. If the requested
page is in the page cache, the page cache returns the page
to the application. Because the page cache resides in the
main memory, the access latency of accessing the page cache
takes about one hundred nanoseconds to complete [39]. If
the requested page is not in the page cache, a page fault is
generated. In this case, the page allocation operation will be
triggered to allocate a new page. When the memory is full,
the Linux’s reclaim scheme is triggered to free pages within
the main memory. There are mainly two reclaim schemes:
asynchronous background reclaim and synchronous direct
reclaim. Background reclaim frees unmapped pages while
direct reclaim frees mapped pages or dirty pages, and thus
direct reclaim has a heavy cost, especially when writing back

dirty pages. After page allocation, the request is delivered to
the file system layer, which finds the logical address of the
requested page. Then, a read request goes through generic
block and I/O scheduler to access the requested page from
flash storage through I/O operations. Going through each of
these layers contributes to additional microsecond scale laten-
cies to this read request, which can include addressing latency
of the file system, queuing latency of the I/O operation, and
reading latency of the flash storage. After these operations,
the fetched page is finally stored in the main memory and
future accesses can be fetched directly from the page cache.
Due to these reasons, a page fault can take microseconds to
finish, leading to much longer read latency especially when a
direct reclaim is triggered.

To quantitatively show the influence of page fault on An-
droid mobile devices, Yu et al. [21] measure the latency of
launching Twitter and Facebook applications in three differ-
ent situations. Figure 2 shows the three scenarios across two
setups based on F2FS [19] and EXT4 [23] file systems, which
are commonly used in Android. “Cached” refers to the case
where most requested pages can be found in the page cache.
This case is implemented by re-launching the application
right after it is closed, and thus its data is still in memory.
“Read” is a case when there are some page faults but there
are enough free pages, 1 and thus the reclaim procedure will
not be triggered. This case is implemented by launching the
application after cleaning the page cache. “Reclaim-first” is
the case where there are some page faults and there are not
enough free pages, triggering the reclaim procedure. This case
is implemented by launching the applications after sequen-
tially launching twenty other applications (to ensure that the
page cache is full prior to the launch of Twitter or Facebook.)

0

500

1000

1500

2000

2500

3000

Twitter Facebook Twitter Facebook

F2FS Ext4

A
p

p
s

La
u

n
ch

in
g

la
te

n
cy

 (m
s)

Cached (no page fault)
Read (page fault)
Reclaim_first (page fault)

Figure 2: Influence of page fault and reclaim on application
launch latency on Android mobile devices.

The results in Figure 2 show that the latency of launching an
application is the shortest in the “Cached” case. Compared to
the “Cached” case, the “Read” and the “Reclaim_first” cases
take longer to launch for both applications. The extended
latency is caused by page faults. The launch latency is the
longest in “Reclaim_first” case because the reclaim procedure
is triggered. Especially, when direct reclaim is triggered, the
latency increases significantly.

1Cache status is checked by the command dumpsys meminfo.

2.2 Key Factors that Affect Performance
Page Re-fault. Page fault can happen in three scenarios. First,
a page fault occurs because physical memory has not yet been
allocated for the requested page. This occurs, for example,
when the page is read for the first time. Second, a page fault oc-
curs because the application wants to read an already evicted
page. We define this case as a page re-fault. Third, a page
fault occurs because a process wants to illegally access invalid
memory. In this case, the operating system will kill the pro-
cess. Out of these three cases, the system can be designed to
minimize page re-fault because the requested page had been
in memory but was evicted by system’s page reclaim scheme.
Page re-fault can be used to measure the page thrashing and
thus evaluate the efficiency of the memory reclaim scheme.
Direct Reclaim. Direct reclaim is a heavy-weight syn-
chronous reclaim scheme that is triggered during the page
allocation procedure when there is not enough free space for
the system’s demands. Once direct reclaim is triggered, An-
droid system needs to pause the allocation process, resulting
in additional performance degradation. An alternative solution
is to use background reclaim. When the number of free pages
is lower than a threshold (watermarklow), background reclaim
threads are woken up to reclaim and free unmapped pages
asynchronously. During the background reclaim, the Android
system does not pause the allocation process. Hence, back-
ground reclaim is lightweight. However, if the background
reclaim is unable to reclaim enough free pages in time and
there are not enough free pages for the current page allocation,
direct reclaim is triggered to reclaim the mapped pages or
dirty pages. When the memory is extremely scarce, direct
reclaim cannot help and some background applications will
be killed by the Android low memory killer (LMK) [1] to
reclaim memory. Because the overhead of LMK is larger
than direct reclaim [28], LMK cannot be used to replace di-
rect reclaim. Thus, LMK complements direct claim and only
handles extreme cases.

3 Analysis of Android Memory Reclaim

In this section, we measure the Android memory reclaim
scheme by counting page re-faults and direct reclaims while
running popular applications.

3.1 Survey of Application Usage Patterns
We survey the distribution of the numbers of background
applications from real phones, then using that numbers to
conduct controlled experiments and study launch latencies.
We develop a monitoring application 2 and deploy it on the
phones of sixty Android users. Out of the 60 users, we veri-
fied the data invalidation and selected 52 users (90% 18-35
years old and 10% 35-50 years old) for our analysis. Our

2https://github.com/MIoTLab/Accliam.

monitoring application collected data on more than twenty
mobile device models over a two-month period. During this
time, the monitoring application generates an hourly report on
other applications’ activity, RAM usage, and device informa-
tion. Our monitoring application runs without root permission.
Hence, the application only checks the applications’ activity
conducted by users but not by systems. With this data, we can
estimate the distribution of background applications’ usage
information as shown in Table 1.

Table 1: Collected data from 52 real phones.
of phones # of background applications Workloads

0 N < 2 light
8 2 ≤ N < 5 light

39 5 ≤ N < 10 moderate
5 N ≥ 10 heavy

Based on the survey, we reproduce different realistic us-
age scenarios by running several popular Android applica-
tions. These applications include Facebook, Twitter, Insta-
gram, WhatsApp, Pinterest, Wish, Chrome, Firefox, Google
Earth, Google Map, Uber, Angrybird, CnadyCrush, News-
Break Youtube, and Spotity. We evaluate both launching and
execution of applications with a different number of back-
ground applications as shown in Table 2.

Table 2: Application combinations used in experiments. A
represents a foreground application and B represents a back-
ground application. 3B+A means launching a foreground
application when there are three background applications.

Applications Operations Memory Workloads

A Launch and use Avail. Light
an application for 5 minutes

3B+A 3 background applications Avail. Moderate
8B+A 8 background applications Full Moderate

15B+A 15 background applications Full Heavy

All our following experiments are performed on a Huawei
P9 smartphone with an ARM’s Cortex-A72 CPU, 32GB inter-
nal memory and 3GB RAM, running Android 7.0 on Linux
kernel version 4.1.18. We also conduct experiments on 2.5GB
RAM by using memtester [34] to occupy memory. There is
no external SD card in order to force all the I/O requests to
the internal eMMC flash storage (/data partition) of Android.
We instrument the Android kernel source code and use the
adb (Android Debug Bridge) tool [37] to obtain information
on memory allocations and the reclaim process of our eval-
uated smartphone. Our instrumentation framework includes
information on the number of re-fault pages, the number of
evicted pages, the size of each allocation, the size of each
reclaim, the number of direct reclaims, and the number of
all reclaim operations. To reproduce the real usage scenarios,
after system start, background applications will be launched
and wait for a while. And then we start to collect the infor-
mation while we launch and use the foreground application
for five minutes. To avoid bias, each experiment is conducted

ten times with the same subset of background applications
and the average is shown. In Sections 3.2 and 3.3, we show
that page re-fault and direct reclaim happen on Android mo-
bile devices unexpectedly frequently even when a small-size
foreground application running.

3.2 Page Re-fault on Mobile Devices
The ratio and the number of page re-faults when launching
and running popular applications are shown in Figure 3. We
define the page re-fault ratio as the proportion of re-faulted
pages on all evicted pages. It can be used to evaluate page
thrashing. The results show that the page re-fault ratio could
be up to 31% when running popular applications. This means
the Android memory reclaim scheme often reclaims pages
that will be used soon. Although the ratio of page re-fault
depends on users’ behaviors, when using only one application
in a system with 3GB of memory, page re-faults should not
occur because the working set of one application does not
exceed 3GB 3. The existence of page re-faults in Figure 3
indicates that the pre-loaded data and processes’ data occupy
the memory space causing many page re-faults.

0

5

10

15

20

25

30

35

40

45

50

0

10000

20000

30000

40000

50000

60000

70000

80000

A 3B+A 8B+A 15B+A A 3B+A 8B+A 15B+A

3G memory 2.5G memory

R
e

fa
u

lt
 r

at
io

 (%
)

P
ag

e
 r

e
fa

u
lt

 n
u

m
b

e
r

(p
ag

e
s) others

foreground
refault ratio

Figure 3: Ratio and number of page re-faults when using one
foreground application for five minutes. For each case, there
are different number of background applications. “Others”
includes background applications and system services.

Moreover, we find that the increase in the number of back-
ground applications has a great impact on the number of page
re-faults. The ratio of page re-faults is up to 31% when there
are eight background applications with 3GB memory. This
means almost one-third of the evicted pages will be reused.
We further find that a major fraction (37% on average) of page
re-faults happens on the foreground app. Because foreground
applications directly interact with users, it is important to min-
imize the number of page re-faults of foreground applications.

3.3 Direct Reclaim on Mobile Devices
Compared to page re-fault, direct reclaim can cause more
severe performance degradation and fluctuations because it
could flush many dirty pages during a page allocation routine.
We show the ratio and number of direct reclaims when running

3It is checked by the command dumpsys meminfo.

popular applications in Figure 4. We define the direct reclaim
ratio as the proportion of the number of direct reclaims on
total of reclaims. Even if the direct reclaim ratio is small (up to
2%), it could induce a large latency because page allocations
need to wait for the direct reclaim to finish. The latency taken
by the direct reclaim can be thousands of times the latency of
the background reclaim. Thus, the direct reclaim is supposed
to be triggered in memory of emergency cases.

0

0.5

1

1.5

2

2.5

0

20

40

60

80

100

120

A 3B+A 8B+A 15B+A A 3B+A 8B+A 15B+A

3G memory 2.5G memory

D
ir

e
ct

 r
ac

la
im

 r
at

io
 (%

)

D
ir

e
ct

 r
e

cl
ai

m
 c

o
u

n
t

number

ratio

Figure 4: Ratio and number of direct reclaims when using one
foreground application for five minutes. For each case, there
is different number of background applications.

We find that the increase in the number of background ap-
plications and the reduction of physical memory have major
effect on the number of direct reclaims. However, the direct re-
claim ratio trend is different between on 3GB (default) and on
2.5GB (using memtester to occupy memory). When memory
is relatively large (3GB), direct reclaim triggers only when
there are some background applications and increases as the
number of background applications increases. However, when
memory is extremely scarce and direct reclaim become in-
effective, OS will kill some applications to reclaim memory
space. Thus, direct reclaim ratio is decreasing with a larger
number of background applications on 2.5 GB of memory.
The number of direct reclaims could be up to 96 in five min-
utes when there are fifteen background applications with the
default 3 GB memory. An efficient memory reclaim scheme
should minimize the number of direct reclaims.

4 The Cause of Page Re-fault and Direct Re-
claim on Mobile Devices

Substantial re-fault rates were also seen on servers, e.g. as
high as 14% reported by Google engineers [9]. Compared to
servers, mobile devices have vastly different characteristics:
much smaller page allocation request size, limited memory,
and highly-interactive foreground applications [10, 13]. Ac-
cording to these characteristics, we conduct another set of
experiments to analyze the Android memory reclaim scheme
to find the main causes of a high number of page re-faults and
direct reclaims.

Observation 1: Page re-fault depends on the available
memory. Figure 5 shows that the number of page re-fault
and evict pages under different available memory. To further
eliminate the impact of user behavior, in this experiment,

we used different usage scenarios from that in Figure 3. “A”
means to launch one foreground app. “A4A” means to launch
one foreground application and then launch four background
applications, and finally re-launch the foreground application.
Relaunching a foreground application is a typical scenario to
produce page re-faults.

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

1.
1

G
_f

re
e

20
0M

_f
re

e

90
M

_
fr

e
e

1.
1

G
_f

re
e

50
0M

_f
re

e

20
0M

_f
re

e

1.
1

G
_f

re
e

50
0M

_f
re

e

A A4A A8A

n
u

m
b

er
 (p

ag
es

)

evict refault

Figure 5: Number of page re-faults and evicted pages under
different available memory.

The results show that the number of background applica-
tions has a major impact on the number of re-fault and evict
pages. Moreover, reducing physical memory can increase
number of both re-fault and evict pages. In a word, the num-
ber of page re-faults depends on the available memory.

Observation 2: Direct reclaim depends on both avail-
able memory and the latency of the background reclaim.
The factors which affect the frequency of the direct reclaim
can be found in its flow chart which is shown in Figure 6.

Page allocation

Lower than
threshold?

Get free
pages

Weakup background reclaim

Enough free
pages?

Get free
pages

Direct reclaim

Reclaim free pages in background

N

Y

N

Y

Figure 6: The flow chart of reclaim scheme.
During page allocation, if the number of free pages is

lower than a threshold, the background reclaim starts asyn-
chronously. If there are not enough free pages for this al-
location or the launched background reclaim does not re-
claim enough pages in time, direct reclaim will kick in syn-
chronously. The flow chart shows that direct reclaim depends
not only on available memory but also on the latency of the
background reclaim. Notably, a larger reclaim size also sig-
nificantly increases the latency of the background reclaim.

Based on the above two observations and the specific char-
acteristics of mobile devices, we found that there are two
additional factors that can increase the number of page re-
faults and direct reclaims.

Observation 3: Background applications keep consum-
ing free pages even though they do not have the same
impact on user experience compared to the foreground
applications. For mobile devices or other highly-interactive
systems, foreground applications have significant impact on
user experience. However, we found that background applica-
tions keep consuming free space under the current memory
reclaim scheme due to two main reasons.

First, we find that anonymous pages from background ap-
plications thrash pages from the foreground application. In
the android system, all the pages are in one of five LRU
lists: Active_anonymous, inactive_anonymous, active_file, in-
active_file, and unevictable. The pages in the unevictable
list will not be evicted. Since anonymous pages contain the
heap information associated with a process, these anonymous
pages are considered to be more important than file pages to
the process. In most cases, the pages in active_anonymous
list will not be evicted, even if they belong to a background
app. Thus, many anonymous pages of background applica-
tions stay in memory, while the file pages from the foreground
application are evicted. These evicted file pages from fore-
ground applications may be accessed again soon, leading to
a high number of page re-faults. Moreover, the anonymous
pages of background applications occupy free space and thus
affect the frequency of the direct reclaim.

Second, we found that background applications are still
active even after they are in the background for thirty minutes.
The details are shown in Table 3. The results are collected
when there are seven user background applications and one
foreground application. Notice that system services are treated
as applications here.

Table 3: Applications are still active in the background.

Time Evict apps Refault apps Foreground Background System

5 mins 53 31 6.2% 34.4% 59.4%
30 mins 52 19 18.3% 33.3% 48.4%

“Evict apps” represents the number of applications that
have pages being evicted while “Refault apps” represents
the number of applications that have page re-faults. “System”
includes system services and private applications that are in-
stalled on the mobile device at the factory. The percentages
in the Table 3 means the percentage of re-faults. The results
show that background applications still request free pages and
thus induce page re-faults. Moreover, background applica-
tions still consume free space and thus affect direct reclaim
frequency.

In summary, the reclaim scheme keeps the pages of back-
ground applications in memory and could induce a high num-
ber of page re-faults and direct reclaims. For servers, the fore-
ground and background applications usually have the same
priority. However, for mobile devices, only the foreground
application has a major impact on the user experience.

Observation 4: Large-size reclaim prolongs the latency
of the background reclaim. In the buddy system, every

memory block has an order, where the order is an integer
ranging from 0 to 11. The size of a block of order n is 2n.
The distribution of allocation order when running popular
applications is shown in Figure 7. These results are collected
from the allocation function _alloc_pages_nodemask(). The
results show that on the Android mobile device, 99% of allo-
cation orders are 0 (1 page), and more than 99.9% of orders
are smaller than 4 (16 pages). This is because the requests on
Android mobile devices are mostly in small size. One of the
main reasons is that most Android applications use SQLite
as the database. SQLite and its temporary files are mostly
accessed in 4KB (1 page) units [20, 29].

97%

98%

99%

100%

FE
Y

FE
A

FE
C

FY
A

FY
C

FM
T

FA
T

FT
C

EY
A

EY
C

EM
T

EA
T

ET
C

YM
T

YA
T

YT
C

M
A
C

A
T
C

order=11
order=10
order=9
order=8
order=7
order=6
order=5
order=4
order=3
order=2
order=1
order=0

Figure 7: The distribution of allocation orders. The corre-
sponding allocation size equals to 2order [21].

The distribution of reclaim sizes is shown in Figure 8. The
results show 80% of reclaim sizes are larger than 32 pages (or-
der=5). Android inherits much of the reclaim scheme from its
server counterpart. The latter often reclaims memory as much
as possible to fulfill large allocations and avoid expensive di-
rect reclaim or killing processes under memory pressure. As
Android applications tend to allocate multiple small blocks of
data (shown in Figure 7), the reclaim process becomes overly
aggressive and ends up reclaiming excessive pages for each
of these small allocations.

0%

20%

40%

60%

80%

100%

FE
Y

FE
A

FE
C

FY
A

FY
C

FM
T

FA
T

FT
C

EY
A

EY
C

EM
T

EA
T

ET
C

YM
T

YA
T

YT
C

M
A
C

A
T
C

order>10

order<=10

order<=9

order<=8

order<=7

order<=6

order<=5

Figure 8: The distribution of reclaim sizes. These results
show the reclaims from LRU lists, and they are collected in
the functions shrik_lruvec() [21].

Large reclaim size prolongs the latency of the background
reclaim. According to observation 2, the latency of the back-
ground reclaim will affect the frequency of the direct reclaim.
Moreover, a large-size reclaim scheme could induce more
page re-faults than necessary [21].

Based on our data in Section 3, Android does not efficiently
manage its memory. This observation is in-line with multiple
technical news: Google Pixel 3 has memory management

issues, such as killing background applications [35] and is un-
able to shuffle between a few applications at a time [33]. More-
over, its memory management issue seemingly gets worse
when users use the camera [16]. Hardware vendors tend to
address the issue by putting a large-capacity DRAM on de-
vices, which alleviates the problem in a short term but leaves
the issue in the future. Moreover, the brute-force solution has
many problems, such as cost efficiency, power consumption,
the growing trend of application size, etc. and these problems
cannot be addressed solely by dropping in more DRAM. In-
stead, our work aims to improve the efficiency of Android’s
memory management.

5 Our Solution: Acclaim

With the understanding of the four observations leading to
a high number of page re-faults and direct reclaims, we pro-
posed Acclaim, foreground aware and size-sensitive reclaim
scheme, which includes two parts. The first part, foreground
aware eviction (FAE), is used to solve the problem that
background applications keep consuming free pages. FAE
takes space from background applications and allocates it to
the foreground application. The second part, a lightweight
prediction-based reclaim scheme (LWP), is used to reduce
the reclaim size of the background reclaim and thus minimize
its latency. LWP tunes the size and amount of the background
reclaims according to the predicted allocation workloads. In
summary, FAE decides from where to reclaim, while LWP
decides how much to reclaim.

5.1 Foreground Aware Eviction (FAE)

The memory is always not large enough to eliminate all page
re-faults and direct reclaims. Both the number and size of
applications increase with memory capacity [38]. Moreover,
when the memory capacity increases, mobile device manufac-
turers often make optimizations, such as locking commonly-
used files [3] and pre-loading predicted applications [31] in
the memory. All these optimizations consume free memory.

Since the memory size is limited, the total page re-faults
can be hardly reduced. The reduction of page re-faults of
the foreground application can have a major impact on the
user experience of mobile devices or other highly-interactive
systems. Thus, we propose to reduce the page re-faults of
foreground applications by sacrificing space from background
applications. Foreground aware eviction (FAE) is proposed to
lower the priority of background pages in LRU lists, causing
them to be evicted faster and thus freeing more memory space.

5.1.1 Framework of FAE

The framework of FAE is shown in Figure 9. FAE needs to
know whether a page belongs to background applications.
Each application has a unique ID (UID). Once an application

is installed, its UID is fixed. The UIDs of user applications
are added to Page Table Entry (PTE). PTE is only accessible
during the page walk process through the page walker. User
applications will not be able to access these UID bits as this
is handled by OS or hardware. The page’s UID is used by
FAE during the eviction procedure. Currently, only 8 unused
bits of each PTE (the 56th to the 63rd) can be used to store
UIDs. Thus, Acclaim only supports 256 unique UIDs at a
time, which is an implementation limitation.

Applications

Android Framework

Foreground
aware

eviction

① install or update apps
② update the config file
③ switch apps
④ deliver the foreground uid
⑤ kernel gets the uids of all apps
⑥ kernel gets the uid of foreground app

①

②

Config
files

Kernel

Memory
managementFore

ground

③

④

⑤

⑥

Figure 9: Framework of foreground aware evict scheme.

There is only one foreground application at a moment but
there could be several background applications. This list of
all background applications can be obtained by subtracting
the foreground application from an application list. The main
task of FAE is to create a list of background applications and
lower their priority compare to the foreground task. To do this,
FAE stores the UIDs of applications in the application list in
a configuration file. This file will be updated when installing
or deleting applications. To identify the current foreground
application. FAE notifies the UID of the foreground applica-
tion to the kernel when users switch applications. Based on
the UIDs of applications in the application list and the UID
of the foreground application, the system can then lower the
priorities of all other applications’ pages in LRU lists.

By default, Acclaim deprioritizes all background user ap-
plications by assigning them lower priorities in page eviction.
To accommodate a small number of applications that keep
serving the users in the background, e.g. music or video play-
ers, Acclaim can treat them as exceptions without degrading
their priorities by excluding them in the application list.

5.1.2 Lower Priority of Background Applications

Initially, we tried to raise the priorities of foreground applica-
tions’ pages or system’s pages. However, this method main-
tains too many useless pages of foreground applications and
the system in memory because of their higher priorities. These
useless pages may lead to OS crashes when free memory is
used up. Thus, FAE chooses to lower the priority of pages of
background applications. Under this scheme, the priority of
foreground applications’ pages and the system’s pages will
not be changed. Their useless pages will be evicted from
memory and thus free memory will not be used up to crush
OS. The details are shown in Figure 10.

Active ListTail Head

Inactive ListHead Tail

clean

write back

u
n

re
fe

re
n

ce
d

referenced

d
irty

If (uid==background)
Go into inactive list

If (uid==background)
stay in inactive list

Figure 10: Foreground aware evict scheme of LRU lists.
Page movement between the “active” and the “inactive”

LRU lists is driven by memory pressure. Unused pages in the
active list go to the inactive list. Pages are taken from the tail
of the inactive list to be freed. If the page has the reference bit
set, it is moved to the head of the active list and the reference
bit is cleared. If the page is dirty, writeback is commenced and
the page is moved to the head of the inactive list. FAE lowers
the priorities of background pages (See Figure 10) and moves
them out of LRU lists quickly. Thus FAE can extract space
from background applications for foreground applications and
thus to reduce the foreground page re-faults.

Sharing pages have the same priority as their creators. To
reduce dynamic-conversion overhead, a sharing page main-
tains the UID of the application that created it. Thus, the
sharing page gets the priority according to the status of its
creator. For example, let us assume page A is shared by appli-
cation D and E. D creates page A first and D is in background
while E is in foreground. If page A is not used for a long
time, it will be likely to be evicted because its owner is in the
background list and thus has low priority. However, if page
A is used frequently, A will remains in the memory. Acclaim
does not move the application’s pages when it is changed
from background to foreground and vice versa. Acclaim only
checks page’s UID and moves a page when it needs to be
moved under the default eviction scheme (See Figure 10).

With FAE, the re-launch time of background applications
can increase because their pages are out of LRU lists. How-
ever, this penalty is much smaller compared to the baseline
scenario where these background applications are killed by
the Android low memory killer (LMK) [1, 28]. Moreover,
the penalty of FAE can be minimized by combining it with
application prediction [8, 27, 31]. If the system predicts a
background application will be used soon, FAE removes these
applications from the background list, and thus does not de-
crease the priorities of its pages in the LRU lists.

Additionally, FAE is compatible with LMK. For example,
FAE can further categorize background applications. Back-
ground applications that may be used in the near future can
donate some of their memory space with Acclaim while back-
ground applications may not be used again can be killed by
LMK when memory is getting full.

We expect FAE to benefit impromptu, short interactions
(checking and replying instant messages, or switching among
applications within a short time span). FAE recognizes them

as foreground applications and optimizes them accordingly.

5.2 Lightweight Prediction-Based Reclaim
Scheme (LWP)

The original reclaim size of each background reclaim is the
maximum number of requested pages until the time of the re-
claim. From Section 4, we find that the current reclaim size is
too large for the allocation requests of mobile devices. Large-
size reclaim induces a high number of page re-faults and direct
reclaims. However, there is a trade-off between the reclaim
size and performance. If the reclaim size of the background re-
claim is too small while the application workloads are heavy,
the free pages will be consumed quickly and the heavy-weight
direct reclaim will be triggered, lowering performance. On
the other hand, if the reclaim size of the background reclaim
commands is too large, page re-faults and direct reclaim will
happen frequently and, again, degrades overall performance.
Thus, we incorporate a workload-prediction based reclaim
scheme into our design by incorporating the historical infor-
mation obtained through a lightweight predictor (See Sec-
tion 5.2.1). Based on the predicted results, the system can
tune the reclaim size of the background reclaim. Another
challenge can occur if we reduce the reclaim size according
to each workload. In this case, the number of reclaim op-
erations can increase while the amount of reclaimed pages
remain unchanged, and thus reducing reclaim size will waste
CPU time. To solve this problem, we incorporate the amount
of reclaiming pages to dynamically tune the size according to
the predicted workloads.

5.2.1 Framework of LWP

LWP consists of two parts, a lightweight predictor and a mod-
erator. Its framework is shown in Figure 11. The lightweight
predictor is run during the page allocation procedure. To re-
duce memory overhead, the sampled allocation requests as
inputs are stored in the lightweight predictor. The outputs of
the lightweight predictor are the predicted reclaim size and the
trend of reclaim amount. The moderator modifies the reclaim
size and the amount of the background reclaim according to
the predicted reclaim size and the amount trend.

Figure 11: The framework of LWP reclaim scheme.

5.2.2 Lightweight Predictors (LWP)

Using recent information processed by a sliding window to
predict the future workloads is commonly applied for pre-
diction [24] [8] [25]. The challenge is how to implement a

lightweight predictor. Recent information-based prediction
should make sure the correctness of stored information. Page
allocation procedure supports concurrency, thus the sliding
window needs to guarantee correctness by using locks which
will greatly degrade the performance. To predict allocation
workloads including size and frequency, the system needs to
store the size and time of historical allocation requests. How-
ever, storing all historical information precisely will occupy
significant space and CPU time and thus degrade the overall
performance. To reduce the overhead, the proposed predictor
is designed as a lock-free sliding window, and it only stores
limited historical information.
Limited historical information. To reduce the stored infor-
mation, the sliding window is carefully designed in two as-
pects. First, the sliding window is designed based on time
slots to avoid storing the time information. Second, the slid-
ing window stores sampled historical information to reduce
the amount of stored information. Each element of the sliding
window is the allocation size of a sampling allocation request.
For example, when the sampling period equals 10 ms, the
predictor will pick one of allocation requests that happened in
this 10 ms and add its allocation size to the sliding window.
Lock-free sliding window. We first analyze the impact of
being lock-free on the sliding window. When the window is
lock-free, the following three things could happen. (1) Data
disorder and data missing could occur; (2) When the predictor
samples the historical information, the penalty of being lock-
free reduces as there are fewer access to locks; (3) Being
lock-free does not affect the system consistency as we only
use it to store the memory historical information. We further
evaluate the accuracy of the lock-free and sampling predictor.
Let sampling = 10 ms, sliding = 10 ms, and window = 1000 ms,
to get the sum of the reclaim sizes in a window. To compare
three cases, the log of sum value is shown in Figure 12 as
the sum in the sampling and lock-free cases are much smaller
than that in the lock-free only case and original cases. Three
usage behaviors, launching Chrome, launching YouTube, and
launching and using five applications, are evaluated. The x-
axis is the index of the sliding window. The y-axis is the log
of the sum of the reclaim sizes in a window. We use vertical
red lines to show the trend changes in the first figure. The
results show that the lock-free and sampling case captures
the same trend as the original case. (For using the ACFYT
case, too much data makes the trend of the sampling case
not obvious. It’s trend also same as the original case.) Thus,
the lightweight predictor can predict the trend of the amount
of allocation requests in the next window correctly. In this
way, prediction can be achieved with a low overhead in both
storage and latency.

5.2.3 LWP-Based Moderator

The moderator is used to tune the reclaim size and amount
of the background reclaim according to the predicted results.

Figure 12: Predicted sum trend of reclaim sizes in the lock-
free and sampling sliding window.

The reclaim amount of the background reclaim could be tuned
by modifying its stop setting (watermarkhigh). The original
background reclaim will stop when the number of free pages
is above the watermarkhigh, which is a fixed value (a pro-
portion of the total number of pages). The original reclaim
size of each background reclaim is the maximum number
of requested pages until the time of the reclaim. To exploit
the trade-off between reclaim size and performance, the LWP
base moderator tries to make the background reclaim reclaims
just enough free pages just in time. The main idea is to tune
the reclaim size of each background reclaim according to
the predicted allocation size and tune the watermarkhigh ac-
cording to the predicted sum trend. “sum trend” is defined as
sum/lastsum, where “sum” is the sum of the reclaim sizes in
the current window and “lastsum” is the sum of the reclaim
sizes in the last window. For the reclaim size, if the trend is
larger than a threshold T1, that means the amount of allocation
in the future will be much increased. Thus, the reclaim size
should be increased.

• Reclaim size = P1 ∗ predicted size when trend ≥ T1

• Reclaim size = P2 ∗ predicted size in other cases, (P2 <
P1)

For the reclaim amount, the moderator tunes the amount of
reclaim based on the default value that is set by the mobile
device manufacture.

• Reclaim amount = min(watermarkhigh ∗ (1 +
trend),watermarkhigh +T2) when trend > 1

• Reclaim amount = max(watermarkhigh ∗ (1 −
trend),watermarklow) in other cases

Reclaim amount is limited. If it is smaller than the default
watermarklow, the performance will be degraded because di-
rect reclaim will be triggered often.

Table 4: Summary of parameters used in LWP.

Symbols Semantics Default values

P1 Amplification factor of reclaim size when I/O is intensive. 4
P2 Amplification factor of reclaim size when I/O is sparse. 2
T1 Defines “sudden change” and thus decides the reclaim size. 2
T2 A threshold to stop background reclaim. watermarkhigh −watermarklow

6 Evaluation

To evaluate Acclaim, we set sampling duration to 10 ms, win-
dow duration to 100 ms, sliding duration to 100 ms for sliding
window of LWP. Both memory overhead and the predict ac-
curacy of LWP are sensitive to these three parameters.

Moreover, we set the parameters for LWP-based moderator
in Table 4. Reclaim size should be larger than the predicted
allocation size to avoid memory once heavy workloads are
arriving. However, according to the analysis in Section 4,
reclaim scheme should not be over aggressive on mobile de-
vices. Thus, we choose small values (4 and 2) as amplification
factors (P1 and P2) under different workloads.

Furthermore, T1 determines the sensitivity to the incre-
ment in workloads. We configure Acclaim to be sensitive to
changes in workloads and responds in time, thus we choose
a relatively small value (2). T2 is the threshold that ensures
that the reclaim amount is not too large. Like the default
watermarkhigh, it is an empirical value. We evaluate Acclaim
on three aspects: impact on foreground applications, impact
on background applications, and overhead.

6.1 Impact on Foreground Applications
Reduction in page re-fault for foreground applications
and direct reclaim of OS. Page re-fault and direct reclaim
are closely related to user behaviors. To compare the solution
and baseline, we need to choose an application with little
change in user behaviors. Thus, a single game, AngryBird,
is used as a foreground application for five minutes in this
evaluation. The page re-fault and direct reclaim results under
the kernel with the original reclaim scheme and the kernel
with our solution are shown in Figure 13.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

A 3B+A 8B+A 15B+A

Fo
re

gr
o

u
n

d
 p

ag
e

 r
e

fa
u

lt

(p
ag

e
s)

baseline

FAE+LPW

FAE

LPW

(a) Page re-fault.

0

20

40

60

80

100

120

A 3B+A 8B+A 15B+A

D
ir

e
ct

 r
e

cl
ai

m
 c

o
u

n
t

baseline

FAE+LPW

FAE

LPW

(b) Direct reclaim.

Figure 13: The page re-faults in a foreground application
(AngryBird) and direct reclaims in the whole OS, showing
the benefit of each solution is different in various scenarios.

The results demonstrate the efficacy of Acclaim. For the
benchmark (AngryBird), Acclaim reduces page re-faults by

16.3% – 60.2%; it reduces direct reclaims of the whole OS by
from 23.9% – 70%. In the experiments, the proposed two tech-
niques play vital, complementary roles. FAE shows higher
benefits as the number of background applications increases,
as it seizes free pages from background applications to relieve
memory pressure. LPW’s benefit depends on the accuracy
of its prediction, based on which it dynamically tunes the
background reclaims. Notably, in case of sudden changes in
application workloads, LPW may suffer from accuracy loss
and thus underperforms.
Benefit to read/write performance. Reduction in page re-
faults and direct reclaims could improve read and write perfor-
mance. To quantify the impact on read and write operations,
we show the read and write performance by using read and
write micro benchmarks, 4 and the results are shown in Fig-
ure 14. Since most page allocation request sizes on mobile
devices are in the size of 4KB [10], we write or read 512MB
or 1GB of data in size of 4KB.

This may not be a typical write access pattern, it could
happen in some cases. For example, when installing games
and applications, more than 1GB of an apk file could be down-
loaded and written back to flash storage. Moreover, this is
a stress test to show Acclaim’s benefit under intensive I/O
requests. Thus, these evaluation results show the performance
impact under intensive I/O requests.

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

w
ri

te

B
3+

w
ri

te

B
8+

w
ri

te

B
15

+w
ri

te

re
ad

B
3+

re
ad

B
8+

re
ad

B
15

+r
e

ad

w
ri

te

B
3+

w
ri

te

B
8+

w
ri

te

B
15

+w
ri

te

re
ad

B
3+

re
ad

B
8+

re
ad

B
15

+r
e

ad

512MB write 512MB read 1GB write 1GB read

La
te

n
cy

 (m
s)

Baseline Acclaim

Figure 14: Read and write performance.
The results show that Acclaim improves write performance

by up to 49.3% (when writing 1GB of data). This is because
page allocation, which Acclaim optimizes, constitutes a signif-
icant portion of the delay in writes because of the write-back
operations of dirty pages. The read performance is only im-
proved slightly as the latency of page allocation is only a
small part of read latency in this set of test cases as no dirty
pages are generated and written back during reads.

4https://github.com/MIoTLab/Accliam

0

500

1000

1500

2000

2500

3000

3500

4000

A
3B
+
A

8B
+
A

15
B
+A A

3B
+
A

8B
+
A

15
B
+A A

3B
+
A

8B
+
A

15
B
+A A

3B
+
A

8B
+
A

15
B
+A A

3B
+
A

8B
+
A

15
B
+A A

3B
+
A

8B
+
A

15
B
+A

CandyCrush Twitter Facebook Firefox Chrome Angrybirds

La
u

n
ch

 la
te

n
cy

 (m
s)

Baseline Acclaim

Figure 15: The launch latency of foreground applications.

Benefit to user experience in application launch. To quan-
tify the impact on user experience, the launch time of various
foreground applications are evaluated. The evaluation results
are shown in Figure 15. The results show that the launch
latency improvement varies for different applications. The
benefit of Acclaim is more pronounced when an application is
launched with multiple memory-hungry applications in back-
ground. For example, the launch latencies of CandyCrush
and Facebook are reduced by up to 58.8% and 28.8%, respec-
tively. Acclaim can have negative impact when foreground
and background applications share common files. For exam-
ple, the launch latency of Chrome could be prolonged up
to 12.3% by Acclaim when there are many background ap-
plications. This may because Acclaim evicts common files
between background applications and Chrome [3]. However,
this penalty can be eliminated by combining with mlock-
ing common files [3]. In summary, Acclaim outperforms the
baseline in most test cases. Of all the 24 test cases, it reduces
latencies in most of them (20, with median reduction of 19.1%
and max reduction of 58.8%) while incurring additional la-
tencies in 4 (with median increase of 3.1% and max increase
of 12.3%).

Figure 16: Average FPS and the standard deviation of FPS of
foreground applications.

Impact on FPS during active user interactions. Acclaim
reduces the launch latency by employing policies on how
application uses the memory to cache files. This policy might
impact user experience negatively after application launch, as
launched applications will have a different amount of data in

page cache. Thus, we measure the possible loss in user experi-
ence as FPS in KFMARK, a popular gaming benchmark. [12].
The average FPS and the standard deviation of FPS of fore-
ground applications are shown in Figure 16. For the average
FPS, the larger the value, the better. While the smaller the
value, the better for the standard deviation of FPS. The results
in Figure 16 suggest no noticeable impact: the difference
between the mean values of the baselines and Acclaim are
smaller than their standard deviations.

6.2 Impact on Background Applications

Because Acclaim evicts more pages from background appli-
cations, it can negative these applications’ re-launch time. We
evaluate the re-launch time for the first-launched background
application to show the upper bound of the penalty. In this
evaluation, we use Facebook as the first launched background
application is evaluated when it is launched for one or ten
minutes, and the results are shown in Figure 17.

Baseline Acclaim

Figure 17: Re-launch time of the first-launched background
application (Facebook).

Based on Figure 17, we observe that re-launch penalty only
occurs when there are a few background applications after ten
minutes. In most cases, the benefit is larger than the penalty.
When there are many background applications, Acclaim effec-
tively seizes free pages from background applications, which
can be used to aid background applications’ re-launch pro-
cess. Moreover, Acclaim also reduces the number of direct
reclaims, benefiting all applications. When the time during
which the application is used after it is launched is too short
(one minute), Acclaim may not have enough time to move out
of the evaluated background application’s pages. After system
starts, many applications are partially run in the background
even if the user does not use them. To this end, their pages
will be firstly evicted from LRU lists by Acclaim.

Additionally, notice that the penalty of Acclaim can be
eliminated by using it in combination with application pre-
diction [8, 27, 31]. If a background application is predicted
as the next used application, Acclaim removes it from the
background application list in FAE, and thus the priority of
its pages will not be degraded in LRU lists when it is in
background. Thus, the penalty will be eliminated.

6.3 Overhead Analysis

Additional memory overhead. FAE adds a uid to PTE, in-
curring a space overhead of an integer space (4 Bytes). For a
device with 3GB of memory, the maximum memory overhead
is 3MB. Moreover, FAE needs to store the uids of applications
in the application list. If a user installs 100 applications, the
total memory cost is only 0.4 KB.

LWP needs to store the sampling historical allocation size
(4 Bytes per entry). When the sampling duration is 10 ms and
the window is 100 ms, only 10 values need to be stored. Even
if there are 100 values in the window, the LWP only takes
up 400B storage overhead. In summary, the total memory
overhead is about 3MB (0.1% of memory capacity).
Performance overhead. FAE’s performance overhead can
be broken down into three parts. First, after system starts, it
needs to check the configure file to get the UIDs of the appli-
cations. It only happens when the system starts. Second, when
the user switches applications, the new foreground UID needs
to be delivered to FAE from the framework layer. Third, FAE
needs to check if the UID equals to one of the background ap-
plications during each page eviction. Only a few comparisons
are conducted, thus the performance overhead is negligible.

The performance overhead of LWP includes two parts.
First, prediction has a small cost because of the lock-free
sliding window. Second, reducing the reclaim size could pro-
long the wake up time of the background reclaim . However,
LWP dynamically tunes the amount of background reclaim
according to the allocation workloads to reduce the CPU
time consumption. In summary, the performance overhead of
Acclaim is trivial.

7 Related Work

Application launch. Existing studies on context-awareness
led to the development of application pre-loading algo-
rithms [8, 27, 31]. These algorithms greatly reduce the appli-
cation launch latency by preparing required resources before
they are requested.
Application foreground/background behaviors. Many mo-
bile applications are designed to run in background to enable
a model of always-on connectivity and to provide fast re-
sponse time. This means that once installed and initiated by
the user, applications can register themselves with the services
provided by the OS framework for background activities, re-
gardless of the user’s actual usage of the app. This is true of
both iOS and Android OS [4, 7, 26].
Memory management. Many previous works were focusing
on the design of the buddy system for managing memory.
Burton [6] proposed a generalized buddy system. By using
the Fibonacci numbers as block size, Knuth [17] proposed
the Fibonacci buddy system. Moreover, this idea was comple-
mented by Hirschberg [15], and was optimized by Hinds [14],
Cranston and Thomas [11] to locate buddies in time simi-

lar to the binary buddy system. Shen and Peterson [36] pro-
posed the weighted buddy system. Page and Hagins [30] pro-
posed the dual buddy system, an improvement to the weighted
buddy system, to reduce the amount of fragmentation to that
of the binary buddy system. A buddy system designed for
disk-file layout with high storage utilization was proposed by
Koch [18]. Brodal et al. [5] improved the memory manage-
ment for accelerating allocation and deallocation. Marotta et
al. [22] proposed a non-blocking buddy system for scalable
memory allocation on multi-core machines. Yu et al. [21]
show that the existing reclaim scheme is not working well for
Android mobile devices. Consequently, this paper proposes a
new smart reclaim scheme for Android mobile devices.
Mobile device-specific memory management. Due to mo-
bile OSes have poor insight into application memory usage,
the memory allocation may take a long latency, especially un-
der memory pressure. Marvin [28] implements most memory
managements in the language runtime, which has more insight
into an app’s memory usage. They target the same problem at
a different layer. By predicting allocation workloads and with
foreground and background information, Acclaim improves
memory management efficiency at the system level.

8 Conclusion

Existing Linux memory reclaim scheme is designed for
servers and PCs. Android inherits Linux kernel and thus the
memory reclaim scheme is transplanted to mobile devices.
The experimental results show that these algorithms become
less effective for the characteristics of applications running on
Android mobile devices due to two main reasons. First, back-
ground applications has less impact on the user experience
than foreground applications. However, they continually con-
sume free pages that increase the frequency of page re-fault
and direct reclaim. Second, the large-size reclaim aggravates
this problem on mobile devices which involve with almost
exclusively small allocation requests. In this work, we pro-
pose Acclaim. Acclaim consists of the Foreground aware
eviction (FAE), which is designed to relocate free pages from
background applications for foreground applications, and the
lightweight prediction-based reclaim scheme (LWP), which
is used to dynamically tune the size and amount of the back-
ground reclaim according to the predicted allocation work-
loads. Evaluation results show that Acclaim improves the
performance in general with a trivial overhead.

Acknowledgment

We would like to thank the anonymous reviewers and our
shepherd Prof. Felix Xiaozhu Lin for their feedbacks and
guidance. This paper was partially supported by a grant from
the Research Grants Council of the Hong Kong Special Ad-
ministrative Region, China (11204718) and National Natural
Science Foundation of China under Grant No. 61772092.

References

[1] Android open source project. low memory killer.
https://source.android.com/devices/tech/perf/lmkd,
2017.

[2] Linux kernel code. lru scheme in the kernel.
https://www.kernel.org/, 2019.

[3] Android open source project. mlock commonly-used
files. https://source.android.com/devices/tech/debug/
jank_jitter, 2020.

[4] AMALFITANO, D., AMATUCCI, N., TRAMONTANA, P.,
FASOLINO, A., AND MEMON, A. A general framework
for comparing automatic testing techniques of android
mobile apps. Journal of Systems and Software 125 (12
2016).

[5] BRODAL, G. S., DEMAINE, E. D., AND MUNRO, J. I.
Fast allocation and deallocation with an improved buddy
system. Acta Informatica 41, 4 (Mar 2005), 273–291.

[6] BURTON, W. A buddy system variation for disk storage
allocation. Commun. ACM 19, 7 (July 1976), 416–417.

[7] CHEN, X., JINDAL, A., DING, N., HU, Y. C., GUPTA,
M., AND VANNITHAMBY, R. Smartphone background
activities in the wild: Origin, energy drain, and optimiza-
tion. In MobiCom ’15 (2015).

[8] CHU, D., KANSAL, A., AND LIU, J. Fast app launching
for mobile devices using predictive user context. In ACM
MobiSys (June 2012), ACM.

[9] CORBET, J. Proactively reclaiming idle memory.
https://lwn.net/Articles/787611/, 2019.

[10] COURVILLE, J., AND CHEN, F. Understanding storage
i/o behaviors of mobile applications. In 2016 32nd
Symposium on Mass Storage Systems and Technologies
(MSST) (May 2016), pp. 1–11.

[11] CRANSTON, B., AND THOMAS, R. A simplified re-
combination scheme for the fibonacci buddy system.
Commun. ACM 18, 6 (June 1975), 331–332.

[12] FVIEW. Fps test tool kfmark. https://kfmark.com/,
2017.

[13] GAO, C., SHI, L., XUE, C. J., JI, C., YANG, J., AND
ZHANG, Y. Parallel all the time: Plane level parallelism
exploration for high performance ssds. In 2019 35th
Symposium on Mass Storage Systems and Technologies
(MSST) (May 2019), pp. 172–184.

[14] HINDS, J. A. An algorithm for locating adjacent storage
blocks in the buddy system. Commun. ACM 18, 4 (Apr.
1975), 221–222.

[15] HIRSCHBERG, D. S. A class of dynamic memory allo-
cation algorithms. Commun. ACM 16, 10 (Oct. 1973),
615–618.

[16] JANSEN, M. Common google Pixel 3 problems, and
how to fix them. https://www.digitaltrends.com/mobile

/common-google-pixel-3-xl-problems-and-how-to-fix-
them/, 2019.

[17] KNUTH, D. Dynamic storage allocation. In: The art of
computer programming 1, 435–455.

[18] KOCH, P. D. L. Disk file allocation based on the buddy
system. ACM Trans. Comput. Syst. 5, 4 (Oct. 1987),
352–370.

[19] LEE, C., SIM, D., HWANG, J. Y., AND CHO, S. F2fs:
A new file system for flash storage. In Proceedings
of the 13th USENIX Conference on File and Storage
Technologies (FAST) (2015), pp. 273–286.

[20] LEE, K., AND WON, Y. Smart layers and dumb result:
Io characterization of an android-based smartphone. In
Proceedings of the 10th ACM International Conference
on Embedded Software (EMSOFT) (2012), ACM, pp. 23–
32.

[21] LIANG, Y., LI, Q., AND XUE, C. J. Mismatched
memory management of android smartphones. In 11th
USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 19) (2019), USENIX Association.

[22] MAROTTA, R., IANNI, M., SCARSELLI, A., PELLE-
GRINI, A., AND QUAGLIA, F. A non-blocking buddy
system for scalable memory allocation on multi-core
machines. In 2018 IEEE International Conference on
Cluster Computing (CLUSTER) (2018), pp. 164–165.

[23] MATHUR, A., CAO, M., BHATTACHARYA, S., AND
DILGER, A. The new ext4 filesystem : current status
and future plans. In In Proceedings of Linux Symposium
(2007), pp. 21–33.

[24] MEI, L., HU, R., CAO, H., LIU, Y., HAN, Z., LI, F.,
AND LI, J. Realtime mobile bandwidth prediction using
lstm neural network. In Passive and Active Measure-
ment (Cham, 2019), D. Choffnes and M. Barcellos, Eds.,
Springer International Publishing, pp. 34–47.

[25] MITTAL, G., YAGNIK, K. B., GARG, M., AND KR-
ISHNAN, N. C. Spotgarbage: smartphone app to detect
garbage using deep learning. Proceedings of the 2016
ACM International Joint Conference on Pervasive and
Ubiquitous Computing (2016).

[26] MUCCINI, H., FRANCESCO, A., AND ESPOSITO, P.
Software testing of mobile applications: Challenges and
future research directions. 2012 7th International Work-
shop on Automation of Software Test, AST 2012 - Pro-
ceedings (06 2012).

[27] NATARAJAN, N., SHIN, D., AND S. DHILLON, I.
Which app will you use next? collaborative filtering
with interactional context. pp. 201–208.

[28] NIEL LEBECK, ARVIND KRISHNAMURTHY, H. M. L.,
AND ZHANG, I. End the senseless killing: Improving
memory management for mobile operating systems. In
USENIX Annual Technical Conference (USENIX ATC
’20) (2020), USENIX Association.

[29] OH, G., KIM, S., LEE, S.-W., AND MOON, B. Sqlite
optimization with phase change memory for mobile ap-
plications. Proceedings of the VLDB Endowment 8, 12
(2015), 1454–1465.

[30] PAGE, AND HAGINS. Improving the performance of
buddy systems. IEEE Transactions on Computers C-35,
5 (May 1986), 441–447.

[31] PARATE, A., BÖHMER, M., CHU, D., GANESAN, D.,
AND MARLIN, B. M. Practical prediction and prefetch
for faster access to applications on mobile phones. In
Proceedings of the 2013 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing (2013),
UbiComp ’13, ACM, pp. 275–284.

[32] PARK, S.-Y., JUNG, D., KANG, J.-U., KIM, J.-S., AND
LEE, J. CFLRU: A replacement algorithm for flash
memory. In Proceedings of the 2006 International Con-
ference on Compilers, Architecture and Synthesis for
Embedded Systems (2006), CASES ’06, ACM, pp. 234–
241.

[33] PELEGRIN, W. Google Pixel 3 is unable
to shuffle between a few apps at a time.
https://www.androidauthority.com/google-pixel-3-
memory-issues-917255/, 2018.

[34] PYROPUS TECHNOLOGY. Memory test tool memtester.
http://pyropus.ca/software/memtester/, 2017.

[35] SCHOON, B. Google Pixel 3 kills background
apps. https://9to5google.com/2018/10/22/pixel-3-
memory-management-issue-background-apps/, 2018.

[36] SHEN, K. K., AND PETERSON, J. L. A weighted buddy
method for dynamic storage allocation. Commun. ACM
17, 10 (Oct. 1974), 558–562.

[37] SHIMP208. Android debug bridge (adb) tool.
https://androidmtk.com/download-minimal-adb-and-
fastboot-tool, 2019.

[38] SIMS, G. How much ram does your phone really need
in 2019? https://www.androidauthority.com/how-much-
ram-do-you-need-in-smartphone-2019-944920/, 2019.

[39] SISOFTWARE. Memory perfromance. https://www.
sisoftware.co.uk/author/cas-admin/page/5/, 2017.

[40] YOO, Y.-S., LEE, H., RYU, Y., AND BAHN, H. Page
replacement algorithms for nand flash memory storages.
In Proceedings of the 2007 International Conference on
Computational Science and Its Applications - Volume
Part I (Berlin, Heidelberg, 2007), ICCSA’07, Springer-
Verlag, pp. 201–212.

	Introduction
	Background
	Android I/O Latency
	Key Factors that Affect Performance

	Analysis of Android Memory Reclaim
	Survey of Application Usage Patterns
	Page Re-fault on Mobile Devices
	Direct Reclaim on Mobile Devices

	The Cause of Page Re-fault and Direct Reclaim on Mobile Devices
	Our Solution: Acclaim
	Foreground Aware Eviction (FAE)
	Framework of FAE
	Lower Priority of Background Applications

	Lightweight Prediction-Based Reclaim Scheme (LWP)
	Framework of LWP
	Lightweight Predictors (LWP)
	LWP-Based Moderator

	blackEvaluation
	Impact on Foreground Applications
	Impact on Background Applications
	Overhead Analysis

	Related Work
	Conclusion

