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ABSTRACT
Graph application plays a significant role in real-world data com-
putation. However, the memory access patterns become the per-
formance bottleneck of the graph applications, which include low
compute-to-communication ratio, poor temporal locality, and poor
spatial locality. Existing RRAM-based processing-in-memory accel-
erators reduce the data movements but fail to address both sparsity
and redundancy of graph data. In this work, we present Gzippo,
a highly-compact design that supports graph computation in the
compressed sparse format. Gzippo employs a tandem-isomorphic-
crossbar architecture both to eliminate redundant searches and
sequential indexing during iterations, and to remove sparsity lead-
ing to non-effective computation on zero values. Gzippo achieves a
3.0× (up to 17.4×) performance speedup, 23.9× (up to 163.2×) en-
ergy efficiency over state-of-the-art RRAM-based PIM accelerator,
respectively.
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1 INTRODUCTION
Graph algorithms have been a core component in many modern
applications, such as social network, web searching, and travel nav-
igation. Google page rank (PR) algorithm [18] can sort all World
Wide Web pages according to the significance. Single source short-
est path (SSSP) algorithm [7] contributes to acquisition of the best
travel route [30]. However, deploying high-performance graph algo-
rithm still poses significant challenges due to its irregular memory
accesses [13] and generally suffers from three major reasons [20].
First, many graph algorithms have low compute-to-communication
ratio, leading to more data accesses per actual compute operation
for any graph size. Second, graph applications exhibit poor tem-
poral locality due to the irregularity of the graph structure. Third,
graph algorithms have poor spatial locality and generate many
sparse data accesses over random memory addresses.

Hardware accelerators have been proposed to optimize data
scheduling and prefetching based on data dependency and online
locality [3, 10, 13, 20]. These hardware mechanisms ameliorate the
temporal/spatial locality to reduce the number of miss in cache to
improve performance. However, they fail to eliminate the funda-
mental challenges of graph applications that generate multiple data
movements between the memory and the processing core [25].

To further address these challenges, many processing-in-memory
(PIM) accelerators are proposed to accelerate graph algorithms
[5, 25, 31] by minimizing data movements through in-memory com-
putation. Several proposals exploit the Non-Volatile Memory (NVM)
(e.g., resistive random access memory (RRAM)) as substrate to per-
form graph operations. For example, GraphR [25], implementing a
PIM graph accelerator through RRAM, enables the acceleration of
graph processing by performing sparse-matrix-vector multiplica-
tion (SpMV) on RRAM’s crossbar. GraphR can leverage the large
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Figure 1: (a) Graph sample (b) Coordinate representation
format (c) SpMV-supported scheme with sparsity in weight
array (d) CAM-based scheme with redundancy in coordinate
mapping of graph for CAM-based scheme highlighted in
yellow.

bandwidth inside RRAM to execute matrix multiply-accumulation
(MAC) in-memory, mitigating the data movement along with high
cost. However, we observe two major inefficiency problems in the
design of RRAM-based SpMV accelerator. First, the sparse nature
of SpMV operations forces the RRAM crossbar cells to store zero-
edge’s data as shown in Figure 1c, leading to ineffective and redun-
dant computations in the MAC. This results in the increase of total
number of MAC in each computing MAC crossbar. Second, these
solutions still suffer from the irregularity, sparsity and redundancy
properties that are common in typical graphs.

To address these issues, GaaS-X [5] adopts the RRAM-based
content addressable memory (CAM) to search the non-zero edges
and subsequently activate target edge’s properties to participate in
MAC operation. CAM-based array facilitates the parallel search of
required vertex ID across all rows resident intra- and inter-crossbar,
achieving precise computation exactly and avoiding performing the
invalid zero edge located in padding data layout. With this method,
GaaS-X stores the same destination vertex IDs of multiple different
edges for many times (i.e., destination A, B, C and D are all stored
twice in Figure 1d in yellow), incurring storage redundancy. As the
number of edges grows, GaaS-X’s inevitable redundancy of storage
required as shown in Figure 1d (in yellow) leads to a significant
amount of CAM array area.

Our analysis shows that the performance of RRAM-based PIM
accelerator is bounded by the inefficiencies during the loading
step, when the input data is being loaded into the accelerator. To
improve efficiency, we first analyze the latency incurred by different
operations in CAM-based scheme. CAM-based scheme (as shown in
Figure 1d) executes five stages in graph running, including search,
hint read, data indexing, MAC and update. The former three stages
(search, hint read and data indexing) make up the data load in
CAM-based scheme. In search stage, CAM array takes an activated
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Figure 2: Latency breakdown in CAM-based scheme.

vertex ID to search the rows having its edges and output match
signal. In hint read stage, the neighbor ID of activated vertex needs
to be read from the CAM according the match for next property
gather (For simplicity, we refer to the neighbor ID as hint, same
below). In data indexing, the hint is fed into on-chip buffer to gather
per-neighbor property. In MAC stage, the MAC crossbar performs
the MAC operation to yield the new property of activated vertex.
In update stage, the new property is updated into on-chip buffer.
In Figure 2 of our evaluation in different datasets, the data load
consisting of the search, hint read and data indexing consumes
51% time in average. Therefore, we get the observation that the
CAM-based performance is bounded by inefficiency of data load.

Our design (Gzippo) is a highly-compact processing-in-memory
accelerator for graph application based on the observation. To allevi-
ate inefficiency of data load, Gzippo fully combines the parallel prop-
erty of classical crossbar and the compact attribute of CSR format to
fulfill a tandem-isomorphic-crossbar architecture. Gzippo’s multi-
banked buffer and simple-designed crossbar avoid serialization of
reading input data. Gzippo decouples the data search and the hint
read stage by designing an additional logic for computing the loca-
tion of required data.With the help of the specific logic, Gzippo elim-
inates the CSR format’s serialization overheadwhile benefiting from
a much more compact format, eliminating the redundancy of CAM-
based schemes. Our evaluation shows that Gzippo achieves 3.6×
~70.0× performance improvement over SpMV-supported scheme,
1.6×~17.4× over CAM-based scheme, and 72.0×~3916.0× energy ef-
ficiency improvement over SpMV-supported scheme, 13.1×~163.2×
energy efficiency improvement over CAM-based scheme.

Our contributions can be presented as follows: (1)We designGzippo,
a RRAM-based tandem-isomorphic-crossbar accelerator architec-
ture consisting of hint indexing crossbar andMAC computing cross-
bar for general graph applications, adapting the highly-compressed
CSR format to reduce the area and overall cost. (2) We provide a
RRAM-based parallel prefetch scheme on graph, enabling a high-
throughput multi-banked buffer for MAC crossbar. (3) We construct
a dedicated PIM-inside pipeline to optimize the execution latency
based on abstract properties exhibited by general graph algorithms.

2 BACKGROUND & MOTIVATION
2.1 RRAM-enabled Processing
Resistive random access memory is known for the non-volatility,
still enabling the analog computation in situ mode rapidly. As
shown in Figure 3a, RRAM-based crossbar array can perform vector-
matrix multiplication (VMM) operation by supporting multiple
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in-memory vector-vector multiplications in parallel. Before execut-
ing VMM, the element of matrix is mapped into the resistance in
each crossbar cell physically and the input vector is represented
as the voltage signal from the digital to analog converter (DAC).
This input is then fed into the crossbar array, which aggregates the
current from each column by Kirchhoff’s law. Finally, the sample
and hold (S&H) extracts and pipes the column current into ana-
log to digital converter (ADC), yielding the digital resulting vector.
Through this process, a vector-matrix multiplication can be done
with no additional data movement between the processing core
and memory.
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Figure 3: RRAM-enabled VMM and search operation.

2.2 Inefficiency in RRAM Graph Accelerators
Shared Resources. While these accelerators provide high per-
formance, we find that the current graph representation required
leads to inefficiency. RRAM-based CAM array consisting of com-
plement memory elements [15] powers selective search operation
in a large crossbar, shown in Figure 3b, vertex ID for 1, 2, 3, 4 and
5 stored in a 3×3 CAM. Vertex 1 and 2 in same column (or 3 and
4 in same column) can be check with target vertex for whether
matched or not concurrently. If there are one of two matches, the
corresponding horizontal match line will output a match signal
to sense amplifier (SA). Notably, vertex 1 and vertex 2 cannot be
forwarded to the output at the same time and need to be acquired
sequentially through vertical bit line. This situation is similar in
vertex 3 and vertex 4. When the CAM enables the parallel search in
graph analysis, most of graph algorithms require many iterations
for execution, e.g., PR. Hence, previous iterated intermediate rank
value from PR application needs to be sent in the computing MAC
crossbar. After obtaining the information of rows necessary for
joining into MAC, the last rank values of each source vertices from
same destination vertex need to be fetched from buffer and fed into
the input registers of computing crossbar, as shown in Figure 1d
(in gray). GaaS-X should sequentially read the source vertex ID for
indexing intermediate iterated value in on-chip buffer, exacerbating
latency of load to impact computing performance of MAC crossbar
(shown in Figure 2).
Graph Representation. The irregularity and flexibility expressed
in graph render specific format to represent this type of data struc-
ture effectively. Array representation of graph stores large volume
of invalid zeros, suffering from serious sparsity. Coordinate format
(COO) only keeps the valid edge, excluding the sparsity from the
zero edges as shown in Figure 1b, where COO stores each edge
in form of (source vertex, destination vertex, weight) from graph
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Figure 4: Graph sample stored as CSR format.

sample in Figure 1a, e.g., (C, A, �) represents the edge from ver-
tex C to vertex A with a weight as �. But redundancy from the
overlapped storage of common vertex located in several edges can
lead to large memory footprint. Instead, the compressed sparse row
(CSR) format enjoys the space efficiency on graph representation
without sparsity and redundancy.

Instead of the COO format, the CSR format consists of four lists
as shown in Figure 4, such as offset list, neighbor list, weight list
and property list. The neighbor vertices of each vertex are put
together in neighbor list closely and continuously. Each vertex
has a offset value, designating the scope of its edges for access.
For weighted graph, the weight of each edge stands in weight list
in line corresponding to its related neighbor. Vertex property list
takes the properties of all vertices in increasing order. Figure 4, as
a directed graph, is stored as pull mode. Taking the vertex 2 as an
example in Figure 4, all values in yellow reflect the information
related with vertex 2. Vertex 2 has a property as 1/2 in the property
list. The offset value of vertex 2 (i.e., 3 in offset list) represents
its edges stored in neighbor list starting from the 3-th location to
next vertex offset (i.e., 6 of vertex 3). Vertex 2 just records its 3
incoming edges in pull mode, such as (1, 2), (3, 2) and (4, 2). (e.g., (1,
2) represents a directed edge from source vertex 1 to destination
vertex 2.) Correspondingly, each edge of vertex 2 has a weight in
the weight list, such as 1/3, 1/3 and 1/4 (e.g., 1/3 is the weight of
edge (1, 2)).
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Figure 5: Graph data layout in CSR format and prefetchmech-
anism

Since the CSR format includes an offset list of all neighbors of
each vertex and enjoys high compressed degree removing spatial
inefficiency (shown in Figure 1c and Figure 1d), we can exploit
these properties to prefetch multiple neighbors concurrently in a
timely fashion. Before the computation, the graph algorithm needs
to access the neighbor list. As shown in Figure 5, the 1D mapping
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contains the locations of all neighbors of each vertex and puts them
together in line. Therefore, the 0 and 3 from offset list indicate
that the first 3 neighbors (i.e., 3, 4 and 5) are the neighbors of
vertex 1. In this case, we can exploit this information to prefetch
data in the 2D mapping within the RRAM’s regular crossbar in
column-major way and read the offset (0, 3). Then, the accelerator
should do the remainder and division operations on the offset (0,
3) to get the locations in first column and first three rows. In our
design, we leverage this CSR format’s highly-compressed scheme
to organize neighbor information and allowing more data to fit
within the limited RRAM crossbar. Neighbors of a given vertex can
be prefetched with the help of hints indirectly provided by offset.
The idea behind our Exactly Hint Indexing (in Section 3.2) is that
CSR format provides offset for easily-and-exactly indexing of data
onto the regular RRAM crossbars through simple remainder and
division operation.

3 GZIPPO DESIGN
Unlike the COO format where CAM supports the serial search for
data gathering, the CSR format requires simple RRAM cell to assist
in gathering all necessary data first before the computation. To this
end, we propose two additional components: tandem-isomorphic
crossbar and specific location identifier logic to Gzippo. Our design
allows parallel prefetch-and-load capacity to match the rapid analog
computing speed of RRAM PIM architecture, leading to a high-
performance RRAM graph accelerator at the low cost.

3.1 Gzippo Microarchitecture
We first discuss the components and the high-level design of Gzippo.
Figure 6 shows the tandem-isomorphic crossbar of Gzippo. Gzippo
exploits both storage and computation capabilities of the RRAM
crossbar to formulate two different types of crossbars: hint crossbar
( 4 ) and MAC crossbar ( 6 ). Hint crossbar only takes advantages of
the storage functionality of RRAM. MAC crossbar possesses both
storage and computation functionalities. Multiple hint crossbars
and MAC crossbars constitute hint matrix and MAC matrix, re-
spectively. In Gzippo, we store the neighbor list in the hint matrix
and the weight list in the MAC matrix (as shown in Figure 4). To
enable parallel prefetch, Gzippo exploits the common RRAM cell
for the hint crossbar cell and MAC crossbar cell without additional
design complexity. The MAC crossbar and the hint crossbar shares
most components except for the representation of bit and some
peripheral logic. For MAC crossbar, one cell represents two bits,
but for hint crossbar, one cell represents one bit. For peripheral
circuitry, hint crossbar just needs SA to support read while MAC
crossbar includes additional S&H to fulfill the analog computation
of MAC.

To boost tandem-isomorphic crossbar performance, Gzippo in-
cludes on-chip buffers and specific logic to enable parallel prefetch-
and-load capacity. This parallel prefetch-and-load are designed to
allow prefetching of immediate data being iterated over multiple
graph vertices and transfer these data input intoMACmatrix for the
next update. This can be done through three components. First, to
find all edge information of each vertex in the CSR format, Gzippo
includes the offset buffer ( 2 ) as additional buffer that can take
the offset of each vertex. Second, to accurately prefetch immediate
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Figure 6: Gzippo architecture overview.

values, Gzippo introduces the location identifier ( 3 ). The location
identifier is used as an ad-hoc logic unit that receives the offset
tuple from offset buffer and produces the row-/column-hit-vector
for hint matrix (discussed in Section 3.2). Third, all hint data is then
forwarded to an additional on-chip buffer, called themid-buffer ( 5 ),
which stores the prefetched data and orchestrates the input data
for the MAC matrix. The special function unit (SFU) ( 8 ) performs
shift-and-add operation in order to sum multiple column resulting
values inside the MAC crossbar.

To schedule all the components, Gzippo maintains a central
controller ( 1 ) that orchestrates the neighbor list on hint matrix
and edge properties or weights into MAC matrix before launching
computation. During processing progress, the central controller
also needs to be able to coordinate all the operations required
in execution. In summary, Gzippo’s main structural components
include the hint matrix, the MAC matrix, the on-chip offset buffer,
the mid-buffer, the location identifier, the central controller and the
SFU.

3.2 Exact Hint Indexing
The primary goal of the Exact Hint Indexing is to ensure that the
graph data in the CSR format is aggregated and provide Gzippo’s
computation unit with correct graph information. To allow accu-
rate data aggregation for a graph operation in CSR format, Gzippo
uses the row-hit-vector to get the target’s vertex IDs from the hint
matrix exactly. To do this, we first communicate with the software
runtime of Gzippo specification (i.e., the number of rows, columns
as well as the total number of the crossbars in our Gzippo structure).
Then, the offset buffer is populated with the offset values that are
required for the current iteration of the MAC operation. This offset
buffer is then used by the location identifier to determine the actual
address to be prefetched into the MAC matrix (shown in Figure 7a).
Using the data from Figure 4 as an example for PR application, the
offset tuple points out the starting and ending store position of
edges belonged to a vertex in the offset list, e.g., (0, 3) is the offset
tuple of vertex 1. With this offset tuple information, our location
identifier performs the remainder and division operation on the
offset tuple using Gzippo’s structure size (i.e., (1, 4, 4) refers to one
4-by-4 crossbar), which yields the crossbar-column-row location
span resulting in the tuple: {starting location, ending location}. The
starting and ending location tuple are tagged with the crossbar
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label, column label and row label to formulate the location triple
(using the earlier example from Figure 4, the ending location triple
of vertex 1, with the crossbar label 0, is (0, 0, 3)). Since the CSR
format puts all neighbors of one vertex together and the hint/MAC
matrices adopt the column-major way to map neighbor and weight
list into crossbars consecutively, the crossbar-column-row location
span {(0, 0, 0), (0, 0, 3)} indicates that the neighbor of vertex 1 stand
continually in the RRAM from first-crossbar-first-column-first-row
cell to first-crossbar-first-column-second-row cell. The last step
of the exact hint indexing is to generate the next set of vectors.
To fulfill this, the row-/column-hit-vector generator receives the
crossbar-column-row location span and produce the row-hit-vector
and column-hit-vector (e.g., row-hit-vector [1, 1, 1, 0] and column-
hit-vector [1, 0, 0, 0]) for the next search and computation. This
vector is used as a filter for the content to be fetched. With the help
of the hit-vector, the hint matrix and the MAC matrix utilize the in-
dexing information to gather data and perform the computation. In
the case that the edges of a vertex are populated in several different
columns or crossbars, the location identifier needs to consider the
bound information and offers multiple hit-vectors for downstream
crossbars.

3.3 Parallel Data Stream
Graph information can be prefetched into the execution section of
Gzippo’s compute components. To perform this task in parallel, we
add the on-chip mid-buffer as shown in Figure 7b. The mid-buffer
exploits a multi-banks scheme to store the intermediate value on
chip in round-robin bank-interleaving way, e.g., the intermediate
value of vertex 1~4 is stored in the first location of bank 0~3 in order
and the intermediate value of vertex 5 is put into the second location
of bank 0 in round-robin. This type of mapping can contribute
to reducing the bank conflict and improving the read parallelism.
With this structure, the central controller can feed the row/column-
hit-vector into hint matrix and acquire multiple hints in parallel,
e.g., 3, 4 and 5 in Figure 7b. These hints are then stored in mid-
buffer to index the previous property values of vertices. Mid-buffer
controller calculates the location of the data in mid-buffer (i.e.,
bank ID (0, 3, 2) and location (4, 0, 0) in bank) for each hint and
multiple locations are then put into the queue. Next, the dispatcher
issues several locations’ information from the queue into multiple
banks. The multi-banks output several intermediate values into
the input register of MAC matrix. Here, the bank-0, 2 and 3 in
Figure 7b are activated and output three property data at one time.
This enables one key benefit: the dedicated mid-buffer enables the
multiple intermediate values to be fed into MAC matrix at same
time and avoids serialization when intermediate values are being
used.

With the offset information available in the CSR format, our
Gzippo design can utilize the hint indexing structure to further
prefetch the location information of the next iteration from hint
matrix into the mid-buffer using the offset located in CSR format.
The mid-buffer structure allows our design to decouple the execu-
tion flow from the dedicated PIM+CSR-based data fetching pipeline.

3.4 Operating Graph Applications
We use the page rank algorithm as an example to demonstrate how
Gzippo operates. As shown in Figure 8, the controller first initial-
izes Gzippo with input data from Figure 4. It stores the serialized
neighbor list onto the hint crossbar column by column. The weight
list is stored into the MAC crossbar in same way. The controller
fetches offset list into offset buffer. Once firing the iterating flow of
PR algorithm, an offset tuple of a given destination vertex 1 is read
from the offset list resided in offset buffer ( a ) and then transmitted
into the location identifier for yielding row-/column-hit-vector ( b ).
The row-hit-vector designates which rows in both hint and MAC
crossbar need activating for current destination vertex update (row
0, 1, and 2), same as the column-hit-vector for column activation
(0-th column). When activated by input signal, the hint crossbar
outputs the vertex ID 3, 4, and 5 concurrently into the output regis-
ter and then into mid-buffer ( c ) for searching the previous rank
value. Deserved being notably, Gzippo architecture can obtain ID-3,
4, and 5 at one cycle, that is, no matter how many edges of some
destination vertex are located in one columns, hint crossbar can con-
currently output these vertex IDs into the mid-buffer for indexing
intermediate rank value into MAC crossbar ( d ). Besides, one vertex
typically has more neighbors, and will be accelerated via parallel
loading. Note that this is different from CAM-based scheme because
CAM array cannot output several vertex IDs into on-chip buffer
for indexing intermediate value, through sequentially outputting
vertex ID one-by-one (as discussed in Section 2.2 ). Gzippo can yield
better performance speedup from parallel loading. After all inter-
mediate values are prepared as an input vector, the MAC crossbar
will execute the MAC operation ( e ) in higher-speed analog way.
The updated rank result ( f ) from selective corresponding column
will override the old one if meeting the constrains. Gzippo iterates
other destination vertices one-by-one until all iterations converge.
The whole computing flow can be optimized in a pipelined manner
to further improve performance.

4 EVALUATIONS
We now provide the experimental methodology, graph benchmark,
dataset and evaluation results compared with the state-of-the-art
baselines.
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Figure 8: Gzippo executing mechanism for PR.

4.1 Experiment Setup
System Design and Evaluation. For the performance and energy
cost evaluation, we build a dedicated in-house cycle-level simula-
tor to implement the Gzippo architecture design. The simulator
establishes and takes the key characteristics of RRAM-based PIM
architecture: peripheral circuit, on-chip buffer (including offset
buffer, mid-buffer, input and output buffer) and additional function
unit into account. We use the CACTI-7 [2] to model the on-chip
buffer at 32 𝑛𝑚 technology node (same as GaaS-X) to acquire the
latency and power parameter. Moreover, we get the read/write
latency and read/write energy cost of PIM compute component
from [21], 29.31ns/50.88ns, 1.08pJ/2.91nJ, respectively. The custom
simulator can achieve the system-level execution time and energy
cost profiling.

Table 1: Parameters of our Gzippo Architecture.

Component Configuration
Area

(𝑚𝑚2 × 10−3)
Power
(𝑚𝑊 )

MAC
Crossbar

128×128
2-bit/cell
number: 2048

51.20 307.20

Hint
Crossbar

128×128
1-bit/cell
number: 1024

40.00 310.00

ADC 6-bit, 1.2𝐺𝑆𝑝𝑠

number: 512 300.80 328.96

DAC 2-bit/cell
number: 256×2048 0.08 1.64

S&H number: 256×2048 20.48 5.12

Digital
Circuitry

I.Location Identifier
II.Controller
III.SFU

1524.90 71.44

Input Buffer 16 KB 6.40 8.72
Output Buffer 64 KB 25.60 34.88
Offset Buffer 512 KB 204.80 279.04
Mid-Buffer 512 KB 204.80 279.04
Total 2.38𝑚𝑚2 1.63𝑊

We implement the digital control circuitry including location
identifier, controller, multiplexers and SFU units in System Verilog
RTL using the 32 𝑛𝑚 (same as GaaS-X) technology node [27]. For
operation at 1𝐺𝐻𝑧, we get the latency and power cost parameters
of digital control circuitry. We configure CAM’s parameter based
on GaaS-X specifications [5]. Because Gzippo can activate up to 16
rows inMAC crossbar through the row hit vector from hint crossbar,
we utilize a 6-bit ADC to support the accumulation in each bitline.
We use the DAC and ADC model based on the design from [12]. We
use NVSim [9] to evaluate the area, latency and power consumption

of RRAM crossbar. The overall area and power consumption of the
Gzippo design is 2.38𝑚𝑚2 and 1.63𝑊 , respectively. Table 1 lists
all the parameters of Gzippo.
Dataset and Baseline Table 2 summarizes all the datasets used in
our evaluation. The WikiVote (WV) [14], SlashDot (SD) [14], Web-
Google (WG) [14], Amazon (AZ) [14], Orkut (OR) [14], LiveJournal
(LJ) [14] can evaluate the PageRank, SSSP and BFS algorithms. The
remaining Netflix [4] dataset is used to test the CF and we set the
feature size as 32. We mainly compare Gzippo with state-of-the-art
RRAM-base PIM accelerators. One is SpMV-supported GraphR [25],
the other is CAM-based GaaS-X [5]. We model the characteristics
of GaaS-X employing our cycle-level simulator with same hard-
ware parameters same as Gzippo. Notably, compared with GaaS-X
with 2048 CAM crossbars, Gzippo only uses 1024 hint crossbars to
facilitate execution.

Table 2: Graph Dataset and Descriptions.

Datasets No. of Vertices No. of Edges

WikiVote Data (WV) 7.0K 103K
SlashDot Network (SD) 82K 948K

Webgraph in Google (WG) 0.88M 5.1M
Amazon Network (AZ) 262K 1.2M
Orkut Network (OR) 3.0M 106M

LiveJournal Network (LJ) 4.8M 69M
Netflix Data (NF) 497.8K 99M

4.2 Performance
Figure 9 shows the speedup in performance of Gzippo with re-
spect to GraphR [25] and GaaS-X [5] on diverse graph datasets for
PR, SSSP and BFS algorithm. Compared with GraphR and GaaS-X,
Gzippo achieves 19.5× and 3.0× speedup on average. We observe
the prefetch scheme is able to find the target data at the timely
manner, allowing the data to be pipelined into the crossbar archi-
tecture in parallel, which leads to the performance improvement
over the state-of-the-art baselines. We also observe the significant
performance improvement of 17.4× over the GaaS-X baseline in CF
algorithm over GaaS-X due to exactly hint indexing on large amount
of neighbors, which leads to a significant overhead in GaaS-X.

4.3 Energy Efficiency
As show in Figure 10, Gzippo is more energy-efficient than the
GraphR and GaaS-X in different datasets for all four types of graph
algorithms. Gzippo acquires a 495.2× and 23.9× in geometric mean
speedup over GraphR and GaaS-X, respectively. While GraphR
spends much energy in large volume of invalid zero-edges computa-
tions, GaaS-X consumes much energy in searching the target vertex
among all crossbars at each update. In contrast, we observe that
Gzippo only has to activate and search on the necessary crossbars
with the help of our prefetching mechanism. This allows Gzippo to
avoid extra energy needed to search and perform data lookup over
multiple iterations. This is especially beneficial when a vertex shares
more neighbors such as the NF dataset, where Gzippo achieves a
thousands- and hundreds-level energy efficiency compared with
GraphR and GaaS-X, respectively.
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4.4 Ablation and Sensitivity Study
Figure 11 shows performance contribution from different parts
designed in Gzippo. We increasingly introduce design to demon-
strate the effectiveness of designs. The base indicates the based idea
of Gzippo without multibanks and pipeline. The base+multibanks
means only to introduce themultibanks. The base+multibanks+pipeline
refers to optimize the Gzippo in base+multibanks in pipelined man-
ner. We chose the base mode as the baseline, other modes normal-
ized to the base. Figure 11 shows that both multibanks and pipeline
can contribute to the performance improvement compared with
the base.

Figure 12 shows the sensitivity study of the crossbar size with the
SSSP algorithm in SD dataset. We evaluate with the crossbar size
ranges from 64×64 to 2048×2048. We observe that Gzippo remains
effective at diverse crossbar size, length and width of crossbar. With
the regard to the energy efficiency, the line curve in Figure 12 shows
that energy efficiency of Gzippo over GaaS-X reduces gradually
and then plateau as the size increases. Since the crossbar becomes
larger and can store more data in same crossbar, the GaaS-X can

fetch the target vertex using fewer crossbars and thus wastes less
energy in search, equal to Gzippo in extremely large crossbar.
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5 RELATEDWORK
Hardware-based Graph Accelerators. Graph-specific memory
hierarchy design is attracting more attention as data can be or-
chestrated so they are readily available to the CPU at the cache.
To exploit the locality of hot vertices, GRASP [10] is proposed to
maximize the reuse of hot vertices while Graphicionado [13] is de-
signed to cache highly-reused graph data using on-chip scratchpad.
Meanwhile, Mukkara et al. propose HATS [20], which utilizes an
online scheduler to traverse the locality inherent in cluster property
of the real-world data. Basak et al. [3] propose DROPLET with a
data-aware prefetcher and alleviate the serialization from depen-
dency chains of different types of graph data. While these works
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can accelerate graph application, they do not take advantage of the
available compute capability of new technologies. Gzippo directly
exploits properties of both RRAM and CSR format to accelerate
graph computation in RRAM..
RRAM-based In-memory Accelerators. Processing-in-memory
provides a novel type of paradigm for addressing the memory
wall existed in traditional accelerators. Tesseract [1] introduces
the dedicated processing unit near DRAM to employ the large in-
ternal bandwidth for graph analytics acceleration. Unlike Tesseract,
GraphR [25] utilizes the analog MAC capacity of RRAM and largely
parallel computation of RRAM crossbar to enable the SpMV, but
with sparsity. GRAM [31] leverages digital RRAM-based technique
and supports the compare-and-swap (CAS) when improving the
parallelism available in the graph computation through bit-wise
operations. Different from GRAM and GraphR, GaaS-X [5] uses
the CAM-based search and MAC analog compute to increase the
performance of graph analytics, along with redundancy in RRAM.
Notably, Gzippo introduces the tandem-isomorphic-crossbar de-
sign and exactly hint indexing mechanism to reduce both sparsity
and redundancy in graph data, leading the improvement in perfor-
mance.

Not only in graph domain, many previous works utilize RRAM
for deep learning applications. PRIME [6] configures RRAM cross-
bar as neural network accelerator with substantial performance.
ISAAC [23] firstly proposes a deep pipeline into RRAM-based ar-
chitecture to increase the the throughput for convolutional neural
networks (CNN). PipeLayer [24] exploits inter-layer parallelism
to boost the performance of both training and inference for CNN.
FORMS [29] employs a fragment polarization method to reduce the
RRAM crossbar cost for deep neural networks, yet ameliorating the
performance.
Software Approaches to Graph Accelerations. Rather than
hardware accelerators, many prior works have explored graph
accelerations through system software modifications and code op-
timizations. TurboGraph [16], GridGraph [32], GraphChi [17], and
X-Stream [22] are CPU-based software approaches to graph accel-
erations. Similar to the hardware-based memory hierarchy design,
these software approaches mainly focus on locality and data access.
This can be done in software by partitioning the whole graph into
shards and processing in parallel. Unlike GraphR [25], the Graph-
Mat [26] abstracts the graph operations into SpMV computation
in software manner with regard to CPU. Apart from CPU-related
framework, Gunrock [28], nvGraph [8], MapGraph [11] and Enter-
prise [19] use the larger memory bandwidth of GPU than CPU to
improve the performance. Though these frameworks are flexible
and efficient on common servers, they fail to address the memory
wall challenge from traditional memory hierarchy design. Gzippo
addresses the challenge by performing the acceleration in memory
and limits memory-to-core data movements.

6 CONCLUSION
We propose Gzippo, a highly-compact RRAM-based PIM acceler-
ator still with high performance. Gzippo addresses both sparsity
and redundancy typically happen in state-of-the-art RRAM graph
accelerators. Gzippo fully exploits the data parallelism of RRAM-
basd crossbar to enable the parallel data load into MAC crossbar.

Gzippo also performs data prefetching to further improve perfor-
mance. Gzippo achieves a 19.5× and 3.0× (up to 17.4×) performance
speedup, 495.2× and 23.9× (up to 163.1×) energy efficiency over
SpMV-supported and CAM-based scheme, respectively.
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