
Decoupled Direct Memory Access:
Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM

Donghyuk Lee∗ Lavanya Subramanian∗ Rachata Ausavarungnirun∗ Jongmoo Choi† Onur Mutlu∗

∗Carnegie Mellon University †Dankook University
{donghyu1, lsubrama, rachata, onur}@cmu.edu choijm@dankook.ac.kr

Abstract—Memory channel contention is a critical per-
formance bottleneck in modern systems that have highly
parallelized processing units operating on large data sets.
The memory channel is contended not only by requests
from different user applications (CPU access) but also by
system requests for peripheral data (IO access), usually
controlled by Direct Memory Access (DMA) engines. Our
goal, in this work, is to improve system performance by
eliminating memory channel contention between CPU
accesses and IO accesses.

To this end, we propose a hardware-software coopera-
tive data transfer mechanism, Decoupled DMA (DDMA)
that provides a specialized low-cost memory channel
for IO accesses. In our DDMA design, main memory
has two independent data channels, of which one is
connected to the processor (CPU channel) and the other
to the IO devices (IO channel), enabling CPU and IO
accesses to be served on different channels. System
software or the compiler identifies which requests should
be handled on the IO channel and communicates this
to the DDMA engine, which then initiates the transfers
on the IO channel. By doing so, our proposal increases
the effective memory channel bandwidth, thereby either
accelerating data transfers between system components,
or providing opportunities to employ IO performance
enhancement techniques (e.g., aggressive IO prefetching)
without interfering with CPU accesses.

We demonstrate the effectiveness of our DDMA
framework in two scenarios: (i) CPU-GPU communi-
cation and (ii) in-memory communication (bulk data
copy/initialization within the main memory). By effec-
tively decoupling accesses for CPU-GPU communication
and in-memory communication from CPU accesses, our
DDMA-based design achieves significant performance
improvement across a wide variety of system configu-
rations (e.g., 20% average performance improvement on
a typical 2-channel 2-rank memory system).

1. Introduction
Applications access data from multiple data sources (i.e.,

storage, network, GPGPU, and other devices) in a system.
In order to enable a convenient interface for applications
to access data from multiple sources, modern systems de-
couple these different sources from applications by adding
an abstraction layer, main memory, between them, thereby
constructing a logical hierarchy: user applications – main

memory – IO devices, as shown in Figure 1a. In this logical
system hierarchy, most data migrations happen between
adjacent layers. Specifically, when executing an application,
the system first transfers the required data from the cor-
responding IO devices, such as storage or network, to the
main memory (IO access). The processor then accesses the
data from main memory (CPU access), and operates on it.
Therefore, these two data transfers, namely CPU and IO
accesses, are logically decoupled from each other through
the use of main memory.

However, the physical implementation of a modern system
is not in-line with this logical abstraction. This causes
contention for system resources. As Figure 1b shows, the
DRAM-based main memory is connected to the memory
controller, which is managed by the processor. Therefore,
both CPU and IO accesses contend for two major system
resources. First, both types of accesses need to be generated
and controlled by the processor cores. Therefore, when a
core is busy performing a data transfer, it cannot perform
other tasks. We call this the control logic contention. Second,
the data transfers resulting from both types of accesses con-
tend for the memory channel. Although the main memory is
used to perform both CPU and IO accesses, there exists only
one physical connection to the main memory (through the
processor core and memory controller), leading to serialized
memory accesses.

main memory

user application
@core

IO devices

(a) Logical Hierarchy

core

DRAM

DMA
mem.
ctrl.

IO devices

mem

& IO

(b) Physical System

core

mem.
ctrl.

IO devices

mem

IO

(c) Our Proposal

Figure 1: Methods to Connect Cores and Data Sources

One obvious solution to tackle this problem is to de-
couple communication between these layers, thereby en-
abling parallel accesses. Integrating Direct Memory Access
(DMA) [3, 51] successfully decouples the control logic from
the processor by directly generating IO requests to main
memory from the DMA engine (Figure 1b). However, the
main memory channel still suffers from contention between



both CPU and IO accesses. Considering that modern systems
support high IO bandwidth (e.g., PCIe 4.0 [72]: 32GB/s),
which is similar to the bandwidth of a two-channel memory
system (e.g., DDR3-2133 [52]: 17GB/s × 2 channels =
34GB/s), IO accesses to memory can consume significant
fraction of the memory bandwidth. Two recent computing
trends, the move to multi-core systems and increasingly data-
intensive applications, increase both CPU and IO accesses
rapidly, which in turn makes memory channel contention an
increasingly more serious performance bottleneck in modern
systems [31, 55, 58].

Conventionally, processor and DRAM manufacturers have
increased the memory channel bandwidth by either adding
more channels or increasing the channel frequency. How-
ever, each additional memory channel requires a large
number of processor pins (e.g., 144 pins per channel in
Intel i7 [27]), significantly increasing the chip area cost.
Increasing the channel frequency results in signal integrity
problems, which require expensive solutions such as more
precise I/O circuitry (high area cost) and more aggressive
channel termination mechanisms (high power cost) [15, 23].
Therefore, increasing memory channel bandwidth at low cost
remains a challenging problem in both today’s and future
systems [44].

Our goal, in this work, is to mitigate memory contention
due to the shared channel to improve system performance.
As we observe above, the difference between the logical
system hierarchy and its physical implementation leads to
contention at the intermediate layer, the main memory. To
mitigate this memory channel contention, we propose a
hardware-software cooperative data transfer mechanism, De-
coupled DMA (DDMA), which provides mostly-independent
data channels to the processor and IO devices, enabling
concurrent accesses to memory from both layers.

As Figure 1c shows, DDMA consists of two hardware
components: (i) a specialized DRAM that has two inde-
pendent data ports, Dual-Data-Port DRAM (DDP-DRAM),
which is conceptually similar to but lower cost than dual-port
DRAM [39], and (ii) off-the-processor-chip control logic
(DDMA in the figure) that orchestrates the data transfers
between the IO devices and the main memory. One data
port of DDP-DRAM is connected to the processor (CPU
channel) and the other data port is connected to the off-
chip control logic (IO channel). The off-chip control logic,
in turn, is connected to all the IO components, i.e., storage,
network, and graphics units. The CPU channel serves only
the processor cores’ memory requests (CPU accesses), while
the IO channel serves the IO accesses that transfer data
between IO devices and main memory.

In a DDMA-based system, system software or the com-
piler determines which requests are served through the
IO channel, and issues the corresponding data movement
instructions. We give two examples. First, when migrating
data from a page in storage to main memory, the operating
system lets the hardware know that the data transfers need
to be initiated on the IO channel of DDMA. Second,

when migrating a set of data to/from external accelerators
(e.g., GPGPU), the corresponding compilers of the external
accelerators translate these data migration requests as IO
channel data transfers on the DDMA.

The DDMA design not only provides an additional chan-
nel to efficiently handle such existing data transfers, but
can also be used to enable new optimizations. For instance,
the additional bandwidth provided by the IO channel can
be used to perform IO operations more aggressively with-
out interfering with the CPU channel (e.g., aggressive IO
prefetching from storage, balancing requests across memory
channels/banks, as we describe in Section 5).

We make the following contributions.

• We propose a new hardware-software cooperative data
transfer mechanism, DDMA, which decouples IO accesses
from CPU accesses. This prevents IO accesses from
interfering with CPU accesses, conserving valuable mem-
ory bandwidth for CPU accesses while also increasing
IO bandwidth, thereby improving overall system perfor-
mance. (Sections 2 and 3)

• We demonstrate that DDMA is a new use case for
the previously proposed dual-port DRAM design, which
can reap significant performance benefits. We propose a
reduced-cost Dual-Data-Port DRAM (DDP-DRAM) im-
plementation by exploiting the characteristics of DDMA.
(Section 3.2)

• We identify different scenarios that can take advantage of
the DDMA substrate to achieve significant performance
improvements such as: (i) CPU-GPU communication, (ii)
in-memory communication (bulk data copy/initialization
within the main memory) and (iii) memory-storage com-
munication. (Section 5)

• We demonstrate that DDMA can be used across a wide va-
riety of workloads and system configurations. Our evalu-
ations, using CPU-GPU-communication-intensive and in-
memory-communication-intensive applications, show that
DDMA provides (i) significant system performance im-
provement, compared to a baseline system that employs
a conventional memory system, and (ii) 83% of the
performance of doubling the number of channels (Sec-
tion 7). DDMA provides these benefits while at the same
time reducing the pin count of the processor chip (see
Sections 3.3 and 7.3 for more detail).

• Our DDMA design enables a new system paradigm,
wherein the processor no longer needs to shoulder the
burden of acting as an intermediary for all data movement.
In modern systems, the processor die serves as the chief
intermediary for data movement across various agents,
which results in high logic complexity, large die area and
high memory contention. Our DDMA design, on other
hand, reduces processor die area and pin count, increasing
system scalability. Doing so potentially enables more
compute bandwidth or cache capacity on the processor,
thereby enabling even higher system performance.

2



2. Motivation and Our Approach
Figure 2 shows the off-chip memory hierarchy in modern

systems, consisting of the main memory system along with
the IO devices. Communication between the processor and
the off-chip main memory happens through the memory
channel, which is managed by the Memory Controller [37,
78]. The memory controller, in turn, connects to the DMA
(engine). The memory controller and the DMA engine man-
age communication between main memory and IO devices
in a cooperative manner.

memory controller hub

graphics

network

storage

USB

IO
 c

h
a

n
n

e
l

mem. 
channel

memory system

ra
n

k
 0

ra
n

k
 1

ra
n

k
 1

ra
n

k
 0

IO devices

mem. controller DMA

CPU

ch1ch0

Figure 2: Modern System Organization with DMA
We examine three different kinds of accesses to main

memory. First, when an application is executing on a pro-
cessor core, if data accessed by the application is not present
in the on-chip caches, the processor core accesses the main
memory through the memory channel to retrieve this data
(This is called a CPU access). Second, if the data is not
present in main memory, the operating system sends out
an IO request to the corresponding IO device to bring the
required data into main memory (called an IO access),
while pausing the application’s execution at the processor
core. This data is also written into main memory through
the memory channel. Third, the operating system could
migrate/copy data in bulk from one set of memory locations
to another (called in-memory communication or in-memory
access).

These three kinds of accesses happen through the mem-
ory channel, resulting in contention between different data
accesses. Furthermore, IO and in-memory accesses are gen-
erally on the order of kilobytes [76, 85], occupying the
memory channel for a larger number of cycles than CPU
accesses, which typically move tens of bytes of data from
main memory to the on-chip caches. Hence, sharing the
memory channel between IO and in-memory accesses is a
major source of contention, delaying CPU accesses.

Figure 3 shows the fraction of execution time spent on
IO accesses, when executing applications from the Poly-
bench [21, 22] suite that run on the CPU and the GPU, using
the memory channel to communicate data between the CPU
and the GPU. In a GPGPU context, typically, the CPU sends
data to the GPU initially and sets up the GPU for execution.
After execution, the GPU sends the results back to the CPU.
As can be observed, for several applications, a large fraction
(i.e., ≥ 40%) of the execution time is spent on transferring
data between the CPU and GPU (through the main memory).
Hence, these data transfers consume a significant fraction
of the memory channel bandwidth, contending with CPU

0%

20%

40%

60%

80%

100%
Time Spent on CPU-GPU Communication

Benchmarks

F
ra

ct
io

n
 o

f 
E

xe
cu

ti
o

n
 T

im
e

geomean: 0.33%

geomean: 33.5%

Figure 3: Time Consumed for CPU-GPU Communication

accesses from other applications, which leads to both CPU
and system performance degradation, as also observed by
previous work [85].1

Our goal is to address the problem of contention between
CPU and IO/in-memory accesses in the shared memory
channel, to improve overall system performance. To this end,
we propose Decoupled DMA (DDMA), which separates CPU
and IO accesses by serving them on different channels. To
enable DDMA, we first devise the Dual-Data-Port DRAM
(DDP-DRAM), which can serve CPU and IO/in-memory
accesses concurrently on each of its two data ports. Our
DDP-DRAM design is a new and low-overhead version of
the original dual-port DRAM [39]. Note that even though
the concept of a dual-port DRAM is not new, leveraging it
to isolate CPU and IO traffic to mitigate memory channel
contention is. We describe our new DDP-DRAM design
and how we leverage it to build a DDMA system in
Section 3. We then describe the system support required
to appropriately distribute accesses on the two channels of
the DDMA system, in Section 4.

3. Hardware Implementation for DDMA
In this section, we first present a brief background on

the organization of a DRAM-based memory system. We
then present our Dual-Data-Port DRAM design. Finally, we
describe how DDMA can be built based on DDP-DRAM
and its control logic.

3.1. Organization of a Memory Subsystem
Figure 4a shows the organization of a typical DRAM-

based memory system. A DRAM main memory system
consists of channels that operate independently. A channel
has one or more ranks that share the control and data
buses of the channel. A rank typically consists of multiple
DRAM chips (typically eight) and each chip, in turn, has
multiple (typically eight) banks. All chips in a rank share the
command bus, resulting in lockstep operation. Each bank has
a 2-D array of DRAM cells that can be accessed in parallel
with those of other banks, because each bank has its own
separate peripheral logic (row decoder and sense-amplifiers
in Figure 4c) to access its own cell array. Figure 4b shows
the configuration of a DRAM chip that consists of eight
banks and peripheral circuitry that connects the channel to
the banks through the control and data ports.

1Tang et al. [85] also showed that a large fraction of memory accesses
are IO accesses (File Copy: 39.9%, TPC-H: 20.0%).

3



64b

memory controller 

CPU chip

core 0 core 1

8b

port

memory subsystem

port

DRAM chip

rank

(a) Memory Subsystem

bank

peripheral

bankbankbank

bankbankbankbank

data port control port

(b) DRAM

64b 64b

8b

wordline

. . .

g
lo

b
a

l b
it

lin
e

cell

data 
serializer 

bank

peripheral

ro
w

 d
ec

o
d

er

ro
w

 d
ec

o
d

er

sense-amplifier sense-amplifier

data port control port

1 Row Selection Path

2 Column Selection Path

3 Data Path

3

1

2

(c) DRAM Bank Operation

Figure 4: Hierarchical Organization of the DRAM-based Memory Subsystem

Although banks can operate in parallel, there are shared
interfaces inside DRAM, due to which the internal bank-
level parallelism cannot be exploited fully. This in-DRAM
interface contention happens because all banks within a chip
share one global control path (row and column selection) and
data path. Figure 4c shows how banks in a DRAM chip are
organized and the peripheral logic around them. To access
data present in a bank, the memory controller first issues a
row selection command (referred to as ACTIVATE) that is
transferred through the row selection path (Ê in Figure 4c).
The row decoder that is local to the bank selects the
appropriate row, following which the sense-amplifiers read
the data from the selected row. The memory controller then
issues a column selection command (commonly referred
to as READ) that is transferred through the shared column
selection path (Ë in Figure 4c), to select a fraction (typically
64 bits) of the entire row worth of sensed data (typically
16Kbits per DRAM logic). Then, the selected data in the
row buffer is transferred to the data port through the shared
data path (Ì in Figure 4c). Therefore, although each bank
has its own row and column selection logic, which enables
banks to operate in parallel, the control and data paths that
carry commands and data, respectively, are shared across all
the banks, thereby serializing accesses to banks.2

To illustrate the effect of contention in the shared internal
DRAM paths, we show a timeline of commands and data
on the in-DRAM interface (the grey region), as well as the
external control port and data port (memory channel), in
Figure 5a. The timeline shows two column selection com-
mands (READ commands) destined to two different banks (a
and b). To issue the first READ command for bank a (RDa),
its decoded column selection signal (CSa) is transferred to
its corresponding bank through the control path. The bank,
then, starts responding with the corresponding data (DATAa)
through the 64-bit data path. The data is divided into eight
8-bit chunks and transferred over the 8-bit data port in four
clock cycles (due to Dual Data Rate – two transfers/clock).

When we extend this scenario by having a second READ

2We refer the reader to [44–47, 76] for the internals of DRAM operation.

Time

Control Port

CSa

RDa

Control Path

Data Path

CSb

RDb

DATAa

Data Port

DATAb

Time

Time

Time

(a) DRAM Internal Timing Flow

Control Port

CSa

RDa

Control Path

Data Path1

CSb

RDb

DATAa

Data Port 1

Data Path2 DATAb

Data Port 2

Time

Time

Time

Time

Time

Time

: Chip Internal Global Path

RDx : READ Bank x : Column Selection on Bank xCSx

DATAx : Data transfer from Bank x : Data Out from Data Port (8bit)

Saved Latency by Using DDP-DRAM

(b) DDP-DRAM Internal Timing Flow

Figure 5: Timing Comparison: DRAM vs. DDP-DRAM

command for bank b (RDb) right after RDa, we observe
that the second request (RDb) suffers significant delay due
to two shared resources. First, due to the shared control
path, the memory controller can issue only one of the
two requests during each cycle — control path contention.
Second, due to the shared data path between banks, the
second command (RDb) can be issued only after fully
transferring data (DATAa) for the previous command (RDa),
incurring a delay of four cycles — data path contention.
Hence, both shared control and data paths lead to request
serialization within DRAM. However, the effect of the data
path contention (a four-cycle delay for the subsequent data
request) is more significant than that of the control path
contention (a one-cycle delay for the subsequent command).
Therefore, we conclude that the shared data path/port is the
main source of request serialization and hence, a critical
performance bottleneck, as also observed by past work [31].

4



3.2. Dual-Data-Port DRAM (DDP-DRAM)
We seek to address the shared data path bottleneck by

introducing an additional data path and port in a DRAM
chip. Figure 6 shows the additional data port (dp1) and
data path (data path 1). The control port is not changed
since the control port is likely not a bottleneck in data
transfers where the channel is contended, as a command
can be issued on the control port every cycle, as we
described in Section 3.1. Each of the two data paths can
be connected selectively to any of the banks and can be
used to transfer data from any bank to the corresponding
data port. The data paths are selectively connected to a bank
using data switches. In order to manage these data switches,
the memory controller needs to issue an additional signal,
data port selection, along with a read/write command. For
instance, if the memory controller sends a READ command
to a bank with the data port selection signal set to data
port 1, the corresponding bank is connected to data port
1 by closing the bank’s switch corresponding to data path
1. The requested data is then transferred from the bank to
data port 1 over data path 1.

64b 64b
data path 0

8b

wordline

. . .

g
lo

b
a

l b
it

lin
e

cell

peripheral

sense-amplifier

ro
w

 d
ec

o
d

er

sense-amplifier

ro
w

 d
ec

o
d

er

dp0 control port

64b64b

8b
dp1

bank

data path 1

Figure 6: Dual-Data-Port DRAM Implementation

We refer to this specific dual-port DRAM design as
Dual-Data-Port DRAM (DDP-DRAM). By adding just an
additional data port and path, DDP-DRAM achieves twice
the data bandwidth of conventional DRAM. Previous work
by Kim et al. has proposed two-channel mobile DRAM [39]
which has two fully independent channels (each having its
own control and data port). Our DDP-DRAM design, on the
other hand, has only one control port (which does not affect
command throughput significantly since the control port is
not the bottleneck). Hence, DDP-DRAM has lower overhead
than the previously proposed dual-port DRAM design.

Figure 5b shows a timeline demonstrating the potential
benefits of using the DDP-DRAM design. The data accesses
of the two READ commands (to two different banks) are
performed mostly in parallel. Only a single cycle delay
occurs due to command serialization in the shared control
port. Hence, by introducing an additional data port while
retaining a single control port, the data accesses to the
two banks can be almost completely overlapped, leading to
significant latency savings to serve the two READ requests
compared to the baseline DRAM design.

3.3. Decoupled DMA (DDMA)
Figure 7 shows how our Dual-Data-Port DRAM is inte-

grated as part of the off-chip memory hierarchy we propose.
As described in Sections 1 and 2, IO accesses contend with
CPU accesses in the shared memory channel in conventional
systems. Therefore, we separate CPU accesses from IO
accesses by using DDP-DRAM, with the goal of improving
overall system performance. To this end, one data port (dp0)
of the DDP-DRAM is used for CPU accesses, while the
other data port (dp1) is used for IO accesses.

ctrl. IO ctrl.

CPU

DDP-DRAM

CPU channel

IO channel

dp0

dp1

ctrl.

DDMA IO interface

ct
rl

. 
ch

a
n

n
e

l

D
D

M
A

 c
o

n
tr

o
l

MEM. CTRL.

data ctrl.

data

DDMA 
CTRL. graphics

network

storage

USB

IO devices

DDP-DRAM
chip

DDMA chip

processor
chip

Figure 7: Proposed System Architecture

Figure 7 also shows the memory controller and DDMA
and how they communicate with DDP-DRAM. DDMA
consists of a DDMA IO interface chip (simply, DDMA chip)
that connects DDP-DRAM to IO devices, and a DDMA
controller (integrated into the processor chip) that manages
the communication between the DDMA chip and IO devices.
The CPU channel connects the memory controller (that is
typically integrated into the processor chip) with dp0 (data
port 0) of the DDP-DRAM chip and carries data pertaining
to CPU accesses that are initiated from the processor to main
memory. The IO channel connects the DDMA chip with
dp1 (data port 1) of the DDP-DRAM chip and carries IO
traffic. The memory controller controls both the CPU and IO
ports of DDP-DRAM by issuing commands on the control
channel, with the appropriate DDP-DRAM port selection.
Note that while DDMA in Figure 7 is logically decoupled
from the main memory and processors, there are many ways
to physically implement the DDMA chip, including placing
it as part of the DRAM chip or package (e.g., at the logic
layer of the Hybrid Memory Cube [25] which contains a
logic layer under DRAM layers in a 3D-stacked manner).

To control both the CPU and IO channels, the DDMA-
based system has three main data communication modes:
(i) CPU access, (ii) IO access and (iii) Port-bypass. CPU
data accesses to DDP-DRAM happen through the CPU
channel, while IO accesses happen through the IO channel.
Although these are the two major kinds of data transfers,
many modern systems also provide a direct communication
interface between IO devices and processor caches: the CPU
can send data directly to the IO interfaces/devices and vice
versa. One example is Intel Direct Data I/O (DDIO) [24, 28]
that supports direct communication between the network and
the last level cache. To support such direct communication
between the IO devices and the CPU, we add the Port-
Bypass mode that transfers data using both the CPU and the
IO channels. The port selection signal, explained in Sec-

5



tion 3.2, is managed by the memory controller in the CPU
to determine the communication mode. We next describe the
READ operation of each communication mode, as shown in
Figure 8. For WRITE, data moves in the opposite direction
as for READ.

CPU Access Mode (Figure 8a). To bring data from DDP-
DRAM, the memory controller issues READ commands with
the port selection signal set to indicate the CPU port. Then,
DDP-DRAM transfers data on the CPU channel and the
memory controller senses the data from the CPU channel.

IO Access Mode (Figure 8b). To manage the data trans-
fers between DDP-DRAM and IO devices, the memory
controller issues a READ command with the port selection
signal set to indicate the IO port. Note that both DDMA and
DDP-DRAM observe the command when the port selection
signal is set to indicate the IO port. DDP-DRAM transfers
data on the IO channel for the READ request and DDMA
senses the data from the IO channel.

Port-Bypass Mode (Figure 8c). When the memory con-
troller issues a READ command with the port selection signal
indicating both ports, DDP-DRAM internally connects its
two data paths to directly connect both the IO and CPU
channels. Then, DDMA transfers data to the memory con-
troller through both CPU and IO channels (across DDP-
DRAM). Note that during the port-bypass mode, no com-
mand is issued to DRAM banks and only peripheral logic
is activated for transferring data between the two ports.

DDMA IO interface

port
sel.

D
R

A
M

 b
a

n
k

IO chan.

CPU chan.

dp1

ctrl.

cell
acc.

ctrl.

MEM. CTRL.

R
D

 w
it

h
 d
p
0

data

data

dp0

DDP-
DRAM

(a) CPU Access

DDMA IO interface

D
R

A
M

 b
a

n
k

IO chan.

CPU chan.

ctrl.

ctrl.

MEM. CTRL.

R
D

 w
it

h
 d
p
1

data

data

dp0

dp1

port
sel.

cell
acc.

DDP-
DRAM

(b) IO Access

D
R

A
M

 b
a

n
k

IO chan.

CPU chan.

ctrl.

MEM. CTRL.

R
D

 w
it

h
 d

p
0

 &
 d

p
1

data

dp0

dp1

ctrl.data

DDMA IO interface

port
sel.

cell
acc.

DDP-
DRAM

(c) Port-Bypass

Figure 8: Three Data Communication Modes of DDMA
(lighter arrow: data flow, darker arrow: control flow)

In the DDMA-based system, the DDMA chip includes IO
interfaces (e.g., PCIe) to connect IO devices. To control the
communication between the DDMA chip and IO devices,
the processor requires an interface to issue commands to
the DDMA chip. There are at least three ways to implement
such a DDMA control interface: (i) adding a DDMA con-
trol channel with additional processor pins (shown as the
connection between the DDMA controller and the DDMA
chip in Figure 7), (ii) assigning a specific DDP-DRAM
region as storage locations for DDMA control registers and
transferring DDMA control commands through that region
in DDP-DRAM, and (iii) using Port-Bypass mode to transfer
commands directly to the DDMA engine. While the first
approach requires additional processor pins, the other two
approaches do not require any additional pins.

4. System Support for DDMA
So far, we described the hardware organization of the

DDMA-based system. In this section, we describe the hard-
ware and software interfaces to control the DDMA-based
system.

4.1. Processor Support
We propose to both (i) leverage existing instructions to

designate data transfers onto the IO channel and (ii) create
new instructions to better leverage DDMA. First, we propose
to map instructions for IO access to the IO channel. Intel
IA-32 [26] provides variants of the IN and OUT instructions
that transfer data to processor registers or the main memory
from IO devices. In a DDMA-based system, data transfers
corresponding to these instructions are simply mapped to the
IO channel.

Second, we create new instructions for memory access
through the IO channel. Load and Store instructions man-
age data transfers between the processor and main mem-
ory. Currently, these instructions are also used for bulk
copy/initialization within main memory. As we will show
in Section 5, such bulk in-memory communication can
happen through the IO channel in a much more efficient
manner. To this end, we augment the processor with two new
instructions, LoadIO and StoreIO, which are variants of the
memory access instructions, mapped to the IO channel.

Third, data transfers managed by the conventional DMA
engine can be performed through the IO channel in the
DDMA-based design. For instance, when CPU sets a range
of memory to be read/written from/to IO devices in the DMA
registers, data is transferred through the IO channel.

4.2. System Software Support
While processors provide hardware interfaces to manage

DDMA, system software needs to use these interfaces ef-
fectively to exploit the features provided by DDMA, to
improve system performance. To this end, system software
first categorizes memory accesses into two groups: (i) CPU
channel accesses and (ii) IO channel accesses. It then issues
instructions corresponding to the appropriate group of mem-
ory accesses. Note that CPU channel accesses are performed
similarly to a conventional memory system. However, IO
channel accesses need to be managed carefully when they
are moved to the IO channel, in order to ensure that the over-
all functionality is the same as in a conventional system. As
Figure 9 shows, system software can easily categorize com-
munications based on the source and destination addresses
of data. Intuitively, when either the source or destination
of a communication is the CPU, then the communication
is identified as a CPU channel access, whereas if neither
source nor destination of the communication is the CPU, the
communication is categorized as an IO channel access. One
exception is the direct communication between IO devices
and the CPU, passing through both channels. To support
such communication, DDMA provides a port-bypass mode
as described in Section 3.3.

6



Inter-Component
Communication Communication

IO channel

CPU channel

CPU channel access IO channel access

CPU

memory

IO devices

Intra-Component

Figure 9: Types of Communication in DDMA
In a DDMA-based system, system software performs such

identification and classification of requests at either compile-
time or run-time while handling system calls requested by
applications. For example, when an application invokes the
read system call for a file, the requested data is transferred
from a device to the buffer cache, and then from the buffer
cache to the user address space, and is then finally moved to
the CPU cache. The first and second transfers, which are the
IO and in-memory accesses respectively, are performed on
the IO channel, while the last one is performed on the CPU
channel. When a task maps a file into its address space using
the mmap system call, the page fault handling triggered by
the first reference to a mapped page is served through the IO
channel, while later references to the page are served through
the CPU channel. Compilers can also support DDMA. For
instance, GPGPU frameworks such as CUDA can provide
specialized compilers that enable communication between
main memory and the memory of the GPU, using DDMA.

5. DDMA Use Cases
DDMA can be used to implement an efficient memory

system by decoupling CPU and IO accesses to improve sys-
tem performance. In this section, we describe five scenarios
where the DDMA-based system can be leveraged to achieve
performance benefits.

5.1. Communication between Compute Units
Modern systems often consist of different kinds of pro-

cessing units that are tailored to perform specific kinds of
computation. In such systems, the processing units com-
municate with each other to share data. Such communica-
tion happens between the memory systems of the different
processing units through IO accesses and can often be the
bottleneck for system performance. We describe a GPGPU
system as an example of such systems.

A GPGPU (General-Purpose Graphics Processing Unit)
system [9, 59, 65] is a parallel computing platform that
utilizes the data-parallel computation capability of multi-
ple shader cores in a GPU (Graphics Processing Unit)
to accelerate computation by dividing work across many
parallel threads. In CUDA, one of the dominant GPGPU
frameworks, the CPU (host) first sets up the GPGPU by
transferring the data required to execute an application to
the GPGPU (through the main memory). After finishing
execution, the GPGPU transfers the results back to the CPU
(through the main memory). These data transfers are carried
out via IO accesses between the main memory and the GPU.
As we show in Figure 3, the data communication between

the CPU and the GPU is a significant fraction of execution
time in a variety of GPGPU applications [21, 22] due to the
resulting IO accesses. These IO accesses are mapped to the
IO channel in our DDMA-based system, thereby preventing
them from contending with CPU accesses.

Figure 10a shows an example communication scenario
involving a CPU and a GPU. When an application is
executing on the CPU, it might need to offload some
computation to the GPU. In order to enable this, the data
on which the computation needs to be carried out has to be
transferred to the GPU memory. In this scenario, the CPU
memory controller issues commands for transferring data
to the CPU system’s DDMA chip through the IO channel
(Ê). The CPU DDMA controller then issues commands (Ë)
for communication between the DDMA chips of the CPU
system and the GPU system, leading to data transfer to the
GPU system’s DDMA chip (Ì). The GPU system’s DDMA
chip then lets the GPU know of the data being transferred
(Í). Then, the GPU memory controller accesses the data
through the IO channel (Î) and the CPU channel (Ï).

In such a system that has multiple compute units, one crit-
ical challenge is how to efficiently provide a unified view of
the different memory systems to a programmer [62, 66, 74].
One approach is to provide a single virtual address space
across the memories of the different compute units and allow
direct access to any part of the physical memory space from
any compute unit (Unified Virtual Addressing [66]). Another
approach is to keep the physical memory spaces of the
different compute units separate (as in Figure 10a), while,
however, providing a hardware mechanism underneath to
automatically transfer data between the different memory
systems (Unified Memory [62]). Only one copy of data
is maintained in the unified virtual addressing approach,
whereas data is duplicated and copied over across the
different compute units in the unified memory approach.
Our DDMA-based system can enable efficient data transfer
mechanisms and thus, efficient implementations of such
unified memory systems.

A major challenge in implementing a unified memory
system is how to provide cache coherence across the physi-
cally separated systems. Designing such a cache coherence
protocol is out of the scope of this work. However, our
DDMA framework can support similar cache coherence
protocols as existing memory systems. This is because, in
our DDMA framework, all memory accesses (over both the
CPU and IO channels) are managed by the processor. Hence,
the processor can use this information for maintaining cache
coherence.

5.2. In-Memory Communication and Initialization
Applications or system software often migrate/copy data

in bulk from one set of memory locations to another, or
initialize memory locations in bulk [76, 77]. We call these
accesses that can happen completely within memory as In-
Memory Communication/Initialization. There are many use
cases for such in-memory accesses. We describe three of
them. First, after a new process is forked, pages are copied

7



CPU

DP-DRAM

DDMA IO interface

ct
rl

. 
ch

a
n

n
e

l

D
D

M
A

 c
o

n
tr

o
l

MEM. CTRL.
DDMA 

CTRL.

CPU port

IO port

2

1

GPU

DP-DRAM

ct
rl

. 
ch

a
n

n
e

l

D
D

M
A

 c
o

n
tr

o
l

MEM. CTRL.
DDMA 

CTRL.

CPU port

IO port

5 4
3

6

DDMA IO interface

channel
CPU 

channel
IO

CPU System GPU System

(a) CPU-GPU Communication

1

CPU

DP-DRAM

DDMA IO interface

ct
rl

. 
ch

a
n

n
e

l

D
D

M
A

 c
o

n
tr

o
l

MEM. CTRL.
DDMA 

CTRL.

CPU port

IO port

2

CPU System

(b) In-DRAM Communication

Storage

1

2
3

CPU

DP-DRAM

DDMA IO interface

ct
rl

. 
ch

a
n

n
e

l

D
D

M
A

 c
o

n
tr

o
l

MEM. CTRL.
DDMA 
CTRL.

CPU port

IO port

4

CPU System

(c) Memory-Storage Communication
Figure 10: DDMA-Based System Operations for Different DDMA Use Cases

from the parent process to the child process when they
are updated, which is called Copy-on-Write [76, 77] (in-
memory communication). Second, when multiple compute
units on the same chip communicate through main memory
(e.g., in an SoC or in a CPU-GPU hybrid architecture),
pages are copied within main memory (in-memory com-
munication). Third, when an application or system software
allocates/deallocates a page in main memory, it initializes the
memory region (in-memory initialization). Such in-memory
accesses require no communication with other system com-
ponents (e.g., CPU). However, modern systems require that
they be performed through the memory channel. Therefore,
the in-memory accesses contend with CPU accesses at the
memory channel.

To mitigate memory channel contention, we propose to
map such in-memory accesses to the IO channel of our
DDMA-based system. First, we can use the DDMA chip (the
DDMA IO interface chip) as an intermediary for in-memory
communication. As shown in Figure 10b, the memory con-
troller simply issues LoadIO (Ê) to bring source data from
memory to the DDMA chip. After that, it issues StoreIO
(Ë) to transfer the data to the target location in memory.
Second, to support in-memory initialization, we add two
new instructions, init-zero and init-one, that enable data
initialization through the IO channel with predetermined data
(i.e., zeroes or ones). When the memory controller issues
an init-zero/init-one command with the IO port selected,
DDMA holds the IO channel data port at zeroes or ones,
thereby writing zero/one data to the specified addresses (Ë).

For performing in-memory accesses, the only difference
our proposal introduces (compared to conventional memory
systems) is that DDMA uses the IO channel instead of the
CPU channel. Therefore, the processor still knows which
data is being updated and can achieve cache coherence by
simply invalidating/updating the corresponding cache lines
before starting DDMA-based in-memory accesses (This is
similar to the cache coherence mechanisms in conventional
systems [26, 76]).

5.3. Communication between Memory and Storage
Modern systems employ virtual memory to manage the

memory system. A user application’s code and data are
maintained in storage and are brought into memory when
the application requests them. The processor core executing
the user application assumes that all pages are in main
memory and sends data access requests to main memory
(CPU access) when the requested data is not present in

the on-chip caches. If the requested data is present in
main memory, it is retrieved and the application continues
execution. If the data is not present in main memory, the
application’s execution is paused and a page fault exception
is generated to bring the requested data from storage to
main memory. Figure 10c shows a communication scenario
between memory and storage in the DDMA-based system.
The operating system generates requests (Ê) to the DDMA
engine to bring the accessed page from storage to the DDMA
chip (the DDMA IO interface chip). After finishing the
data transfer from storage (Ë), the DDMA chip sends an
acknowledgment to the DDMA controller on the CPU chip
(Ì). Then, the memory controller issues commands for
transferring data to main memory over the IO channel (Í).
In today’s systems, data for both CPU and IO accesses are
transferred over the same memory channel. Since an entire
page (several kilobytes or megabytes) is transferred from
storage to memory on an IO access, IO accesses occupy the
channel for a large number of cycles, contending with CPU
accesses. DDMA mitigates the effect of this contention by
isolating CPU and IO accesses to different ports.

The case for file read/write operations is similar to that
of page fault handling. In order to access files in storage,
the user application requesting the file issues system calls
(read/write) with a pointer to the area reserved in memory
for the file and the size of the requested file. The operating
system then generates multiple IO requests to storage to
bring the file from the IO device to the reserved memory
area (file read), or to write the file from memory to the
IO device (file write). To mitigate the contention caused
by such file operations on the CPU’s memory accesses, we
map such file read/write operations to the IO channel of
DDMA. Hence, the only difference between our framework
and conventional systems is that data is transferred from
the storage device directly to main memory without going
through the on-chip memory controller as the intermediary.
The on-chip memory controller still controls the correspond-
ing accesses by issuing the appropriate commands (but it
does not receive data). Therefore, simply invalidating the
corresponding cache lines before starting DDMA provides
cache coherence for communication between memory and
storage (This is similar to the cache coherence mechanisms
in conventional systems [26, 76]).

5.4. Aggressive IO Prefetching
To hide the long latency of IO devices, modern systems

adopt IO prefetching techniques that speculatively bring data

8



from IO devices to main memory, in advance of demand
requests for the data from the CPU. In conventional memory
systems, IO requests contend with memory requests at
the memory channel, delaying demand requests to main
memory. Previous works [6, 8, 10, 16, 53, 68, 70] proposed
efficient IO prefetching techniques to mitigate memory
channel contention. However, none of these techniques can
fundamentally eliminate the memory channel contention
caused by speculative requests.

Our DDMA design provides a fully-isolated IO channel,
which can bring data from IO devices to main memory
without interfering with CPU requests. Therefore, DDMA
drastically reduces the cost of data transfer for IO prefetch-
ing. Hence, it can enable more aggressive IO prefetching
for better performance. Note that DDMA is orthogonal to
IO prefetching mechanisms, and can be used in conjunction
with any of them.

5.5. Load Balancing in Memory Channels & Banks
The main memory system consists of multiple hierarchical

components (channels/ranks/banks) that enable concurrent
accesses. When requests contend at these components, the
system suffers from high latency due to memory bandwidth
contention, which can degrade system performance. Previous
works mitigate such resource contention using two major
approaches: (i) dynamic page migration [7, 12, 60], and
(ii) application-aware data placement [5, 14, 54]. Both of
these techniques require moving large amounts of data over
the memory channel, which increases the memory channel
contention. The IO channel of our DDMA design can
migrate data completely within the memory system, without
interfering with data accesses from the CPU cores, thereby
enabling efficient or more aggressive implementation of data
migration/placement techniques.

6. Evaluation Methodology
We evaluate our proposal with multi-programmed work-

loads on multi-core systems. We explore two of our
case studies from Section 5, CPU-GPU communication
and in-memory communication, using three different ap-
plications: (i) memory-intensive applications, (ii) CPU-
GPU communication intensive-applications and (iii) in-
memory communication-intensive applications. We describe
our workload selection and simulation methods in the next
subsections.

6.1. CPU–GPU Communication
GPGPU applications could run alongside other CPU-only

applications. A GPGPU application’s execution on the GPU
is set up by a CPU core by first transferring data to the GPU.
The GPU performs computation on the data and transfers the
results back to the CPU (main memory). IO transfers due
to the CPU-GPU communication could interfere with other
applications’ memory accesses.

Benchmarks. In order to construct workloads that would
model this scenario, we use two categories of applica-
tions: (i) memory-intensive benchmarks, (ii) CPU-GPU

communication-intensive benchmarks, as shown in Table I.
For the memory-intensive benchmarks, we use Pinpoints [50,
69] to collect traces. We use 31 benchmarks from SPEC
CPU2006 [80], stream [2] and TPC [86]. For CPU-GPU
communication-intensive benchmarks, we collect memory
access traces of Polybench [21, 22], executing on top of
a CUDA [61] platform by using the Nvidia Visual Pro-
filer [63]. We use a total of eight benchmarks for which
data transfers between the CPU and the GPU constitute
a significant fraction of execution time (data transfer time
> 10% of total execution time).

Type Benchmarks

Memory cpu2006: Total 23 benchmarks

-Intensive tpc [86]: tpcc64, tpch17, tpch2, tpch6
stream [2]: add, copy, scale, triad

GPU-CPU polybench [21, 22]: 2dconv, 3dconv, 3mm, atax, bicg
Comm. gemm, gesummv, mvt

In-Memory apache (web server), bootup (system bootup)

Comm.- compiler (gcc, make), filecopy (cp -R), mysql

Intensive fork (system call), shell (a Linux shell script)
memcached (in-memory key-value store)

Table I: Evaluated Benchmarks

Workloads. We construct workloads by combining mem-
ory intensive benchmarks and CPU-GPU communication in-
tensive benchmarks. We construct three categories of 4-core,
8-core and 16-core workloads with different fractions of
CPU-GPU communication-intensive and memory-intensive
benchmarks - (i) 25% – 75%, (ii) 50% – 50%, and (iii)
75% – 25%. With 16 workloads in each category, we present
results for 48 workloads for each multi-core system.

Simulation Methodology. We use a modified version of
Ramulator [40], a fast cycle-accurate DRAM simulator that
is available publicly [41]. We use Ramulator combined with
a cycle-level x86 multi-core simulator. Table II shows the
system configuration we model.

Component Parameters

Processor 4–16 cores, 5.3 GHz, 3-wide issue,
8 MSHRs/core, 128-entry instruction window

Last-level cache 64B cache-line, 16-way associative,
512kB private cache-slice per core

Memory 64/64-entry read/write queues/controller,
controller FR-FCFS scheduler

Memory system DDR3-1066 (8–8–8) [33], 1–4 channels,
1–4 ranks-per-channel, 8 banks-per-rank

IO interface PCI Express 3.0 [71]: 16 GB/s (8 GT/s)

GPGPU Model: Nvidia C2050 [64], 448 CUDA cores,
3 GByte GDDR5: 144 GByte/s

Table II: Configuration of Simulated Systems

We simulate the CPU-GPU communication-intensive
benchmarks until completion. Since the CPU-GPU
communication-intensive benchmarks execute for much
longer than the co-running computation-intensive
benchmarks, the computation-intensive benchmark
traces wrap around upon reaching the end of the trace.

9



Furthermore, in order to reduce simulation times while
realistically modeling contention between CPU and IO
accesses, we scale down the length of the CPU-GPU
communication and the GPU execution phases by 1/10
by randomly sampling and simulating communication and
computation. We use the weighted speedup metric [19, 79]
for performance evaluation.

6.2. In-Memory Communication
Benchmarks. We perform evaluations of this scenario us-

ing eight in-memory communication-intensive benchmarks,
listed in Table I. We collect traces of these benchmarks using
a full-system emulator (Bochs [1]) with small modifications.
Since in-memory communication typically happens at a page
granularity (4KB in our evaluations), when there are 64
consecutive Load or Store operations, we translate those
Load and Store operations into LoadIO and StoreIO
operations that can be served through the IO channel in the
DDMA-based system.

Workloads. We construct our workloads by combin-
ing computation-intensive and in-memory communication-
intensive benchmarks. We build 48 four-, eight-, and sixteen-
core workloads, resulting in a total of 144 workloads, as
explained in Section 6.1.

Simulation Methodology. We use Ramulator [40] with
a cycle-level x86 multi-core simulator (Section 6.1). We
use a similar simulation methodology to that described in
Section 6.1. We simulate each benchmark for 100 million
representative instructions as done in many prior works [4,
11, 42–44, 54, 81–83].

7. Evaluation Results
We evaluate the benefits of employing DDMA in the

context of systems where CPU-GPU communication and
in-memory communication interfere with memory accesses
from other CPU applications.

7.1. Performance Benefits
Figures 11a and 11b show the system performance im-

provement on a 2-channel 2-rank system for 4-, 8-, and
16-core workloads with CPU-GPU communication and in-
memory communication, respectively. We draw two major
conclusions. First, our DDMA-based system provides sig-
nificant performance improvement over the baseline, across
all core counts. Second, the performance improvements
increase as the number of cores increases, due to the higher
degree of contention between CPU and IO accesses, and,
hence the larger opportunity for our DDMA-based system
to provide performance improvement.

Sensitivity to Channel and Rank Count. Figures 12a
and 13a show performance (weighted speedup) improve-
ment for workloads with CPU-GPU communication and in-
memory communication respectively across a variety of sys-
tem configurations with varying number of cores, channels,
and ranks.

0%

5%

10%

15%

20%

25%

4-Core 8-Core 16-CoreW
e

ig
h

te
d

S
p

e
e

d
u

p
 I

m
p

ro
v
e

m
e

n
t

(a) CPU-GPU Communication

0%

5%

10%

15%

20%

25%

4-Core 8-Core 16-CoreW
e

ig
h

te
d

S
p

e
e

d
u

p
 I

m
p

ro
v
e

m
e

n
t

(b) In-Memory Communication

Figure 11: Performance on a 2-Channel 2-Rank System

Three conclusions are in order. First, our mechanism
significantly improves performance across all system con-
figurations (4–16 cores, 1–4 ranks, 1–4 banks). Second, as
the number of channels increases (for a fixed rank count), the
performance improvement decreases. This is due to reduced
channel conflicts, which provide less opportunity for DDMA
to reduce contention. Third, as the number of ranks increases
(for a fixed channel count), the performance improvement is
higher since the contention for memory bandwidth is higher.

Bandwidth Consumption of Both Channels. The source
of the performance gains can be understood better by break-
ing down the bandwidth consumption on both CPU and IO
channels, as shown in Figures 12b and 13b. The bottom dark
grey portions represent the fraction of execution time when
both the CPU and IO channels transfer data, while the light
grey portions represent the fraction of execution time when
only one of the data buses transfer data. In conventional
memory systems, the dark grey portion would not exist,
since requests would have to be served on only the CPU
channel, whereas our DDMA-based system enables data
transfers in parallel, as indicated by the dark grey fraction.
As we would expect, on systems that have low channel
counts and high rank counts, the fraction of data transferred
in parallel (the dark grey fraction) is higher, since there is
higher degree of contention.

Sensitivity to Workload Communication Intensity. An-
other observation we make from Figures 12b and 13b is that
the IO channel utilization is relatively low (20%− 40% for
the CPU-GPU communication workloads and 10% − 20%
for the in-memory communication workloads), while the
CPU channel utilization ranges from 50% to 90%. These
results reveal that the CPU channel is indeed overloaded.
Therefore, when the CPU and IO accesses are transferred on
the same channel, they interfere with each other, resulting in
performance degradation. The results also show that there is
still room for performance enhancement, e.g., by prefetching
data from IO devices on the IO channel. We expect that
our proposed memory system would provide more benefits
when there are more accesses performed on the IO chan-
nel. To verify this hypothesis, we study the performance
improvements for workloads with different communication
intensities in Figure 12c and 13c. Our proposed mechanism
provides more performance improvement for workloads that
contain more CPU-GPU communication-intensive bench-
marks and in-memory communication-intensive benchmarks

10



0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

C1R1 C2R1 C4R1 C1R1 C1R2 C1R4

4-Core 8-Core 16-Core

Channel Count(C)/Rank Count(R)W
e

ig
h

te
d

S
p

e
e

d
u

p
 I

m
p

ro
ve

m
e

n
t

(a) DDMA Performance on Various Systems

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

C1R1 C2R1 C4R1 C1R1 C1R2 C1R4

C
h

a
n

n
e

l 
U

ti
liz

a
ti

o
n

Channel Count(C)/Rank Count(R)

C
P

U IO

C
P

U IO

C
P

U IO

C
P

U IO

C
P

U IO

C
P

U IO

Both Channels Busy
Single Channel Busy

(b) Channel Bandwidth (16-Core)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

C1R1 C2R1 C4R1 C1R1 C1R2 C1R4

25% 50% 75%

Channel Count(C)/Rank Count(R)W
e

ig
h

te
d

S
p

e
e

d
u

p
 I

m
p

ro
ve

m
e

n
t

(c) DDMA Performance vs. Fraction of CPU-GPU
Communication-Intensive Workloads (16-Core)

Figure 12: DDMA Performance for CPU-GPU Communication Workloads

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

C1R1 C2R1 C4R1 C1R1 C1R2 C1R4

4-Core 8-Core 16-Core

Channel Count(C)/Rank Count(R)W
e

ig
h

te
d

S
p

e
e

d
u

p
 I

m
p

ro
ve

m
e

n
t

(a) DDMA Performance on Various Systems

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

C1R1 C2R1 C4R1 C1R1 C1R2 C1R4

C
h

a
n

n
e

l 
U

ti
liz

a
ti

o
n

Channel Count(C)/Rank Count(R)

C
P

U IO

C
P

U IO

C
P

U IO

C
P

U IO

C
P

U IO

C
P

U IO

Both Channels Busy

Single Channel Busy

(b) Channel Bandwidth (16-Core)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

C1R1 C2R1 C4R1 C1R1 C1R2 C1R4

25% 50% 75%

Channel Count(C)/Rank Count(R)W
e

ig
h

te
d

S
p

e
e

d
u

p
 I

m
p

ro
ve

m
e

n
t

(c) DDMA Performance vs. Fraction of In-Memory
Communication-Intensive Workloads (16-Core)

Figure 13: DDMA Performance for In-Memory Communication Workloads

(75%). This is because for workloads that have more CPU-
GPU communication or in-memory communication bench-
marks, a larger fraction of memory accesses can be served on
the IO channel, reducing the memory bandwidth contention
that exists in the baseline.

7.2. Sensitivity to Balance of Accesses on Channels
To evaluate the sensitivity of our DDMA-based system to

the balance of accesses across the CPU and IO channels,
we perform sensitivity studies with microbenchmarks that
distribute accesses on the two channels. We generate the
microbenchmarks by varying two factors: (i) memory inten-
sity - Miss-Per-Kilo-Instructions (MPKI), (ii) the fraction
of accesses on either channel, as shown in Figure 14.
First, as expected, when accesses are distributed evenly on
both channels, our DDMA mechanism provides the highest
performance benefits. Second, DDMA provides higher per-
formance improvement for workloads with higher memory
intensities due to the higher contention caused by them.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0 15 30 45 60 75 90

MPKI40 MPKI30

MPKI20 MPKI10

W
e

ig
n

te
d

S
p

e
e

d
u

p
 I

m
p

ro
v
e

m
e

n
t

IO-Access Fraction (%)

(a) 8-Core System

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0 15 30 45 60 75 90

MPKI40

MPKI30

MPKI20

MPKI10

W
e

ig
n

te
d

S
p

e
e

d
u

p
 I

m
p

ro
v
e

m
e

n
t

IO-Access Fraction (%)

(b) 16-Core System

Figure 14: Channel Access Balance Analysis

7.3. Increasing Channel Count vs. Using DDMA
One important question that needs to be addressed to val-

idate DDMA’s effectiveness is: How does DDMA perform
compared to using more memory channels? To investigate
the effectiveness of our DDMA design, we evaluate the per-
formance of three systems with the following memory sys-
tem configurations in Figure 15a: (i) a conventional single-
channel memory system, (ii) a DDMA-based single-channel
memory system, and (iii) a conventional two-channel mem-
ory system. Compared to the conventional single-channel
system, our DDMA design improves the performance of 4-,
8-, and 16-core workloads by 15%/24%/32%, respectively.
We observe that doubling the number of channels improves
performance by 22%/41%/60% over the baseline. Hence,
our DDMA design achieves 94%/88%/82% of the perfor-
mance benefits of doubling the channel count, for 4-, 8-, and
16-core workloads, respectively.

Figure 15b shows the processor pin count of the three

0%

25%

50%

75%

100%

125%

150%

175%

200%

4-Core 8-Core 16-Core

1 channel (baseline)

1 channel DDMA

2 channels

N
o

rm
a

li
ze

d
 W

e
ig

n
te

d
S

p
e

e
d

u
p

(a) Performance

600 600 600

98 98 98

144 144

288
117

117

73

0

200

400

600

800

1000

1200

1400

1600
DDMA Control Interface

IO Interface (e.g., PCIe)

Memory Channel Interface

Others

Power

1 channel
DDMA

2 channels
1 channel

P
a

ck
a

g
e

P
in

s

(b) Processor Pin Count [27, 29]

Figure 15: Increasing Channel Count vs. Using DDMA

11



systems. We make two observations. First, compared to
the baseline single-channel memory system, using DDMA
reduces the pin count by 4.5% (from 959 to 915). This
is mainly due to moving the IO interface off the CPU
chip. Second, doubling the number of channels increases pin
count by 11.9% (from 959 to 1103). This is due to the new
pins needed for the additional memory channel (114 pins).
Hence, DDMA has the lowest pin count, yet its performance
is much higher than the baseline and closer to the system
with much higher pin count. We conclude that DDMA is a
cost-effective approach to improving system performance.

7.4. Overheads in Implementing DDMA
Area Overhead of DDP-DRAM. To enable simultaneous

data transfer, DDP-DRAM adds an additional data path and
port, which consists of a 64-bit data bus per four banks (128
wires in total for an 8-bank DRAM chip), the corresponding
logic and port selection switches, and data/power pads (eight
data pads, eight power pads, two port selection pads, and two
DQS pads). We estimate a 1.6% additional DRAM chip area
overhead compared to the conventional single-port DRAM
using 55 nm 2GByte DDR3 models from Rambus [87].
A DDP-DRAM package would have 20 additional pins
corresponding to the additional pads. Compared to the same
baseline, previously proposed dual-port DRAM [39] has
6.7% additional area and 47 additional pads per chip (as it
replicates control path and port as well as data). We conclude
that our DDP-DRAM design has lower overhead than the
state-of-the-art dual-port DRAM design.

Overall System Overhead vs. System Scalability. Our
mechanism reduces CPU pin count mainly by removing IO
interfaces from the CPU chip, as shown in Section 7.3.
Even though our DDMA design leads to an additional
chip (i.e., the DDMA chip, for the off-chip DDMA IO
interface) and additional pins for DDP-DRAM, we believe
that our DDMA-based system is cheaper and scalable than
existing systems due to two reasons. First, CPU area is more
expensive than off-chip area in terms of performance. In
modern systems, the CPU is typically at the center of most
processing activity. Therefore, the area nearby CPU cores is
more expensive and critical for overall system performance.
For example, 1 MByte of Last-Level Cache (on the CPU
chip) is much more expensive and helpful for performance
than 1 MByte of main memory (off the CPU chip). Second,
our DDMA design enables good system scalability. Due to
the growing bandwidth demand for IO interfaces, modern
systems have integrated more IO interfaces onto the CPU
chip at the expense of CPU area. We envision that these
overheads will limit CPU scaling in the future. Our proposal
provides a way to increase the bandwidth between the main
memory (DRAM) and the IO devices while at the same
time moving the IO interfaces off the CPU chip. Thus, our
DDMA design enables both high bandwidth and scalability.

8. Related Work
To our knowledge, this is the first work to propose a

main memory organization and a main memory control

mechanism that decouples IO accesses from the processor
and the memory channel (CPU channel) with the goal
of reducing contention in the memory channel. In this
section, we present related studies and compare them to our
approach.

Separate Control for CPU and IO Accesses. Many
past works propose techniques to manage IO accesses more
efficiently. Tang et al. propose the DMA cache [85], a
dedicated on-chip storage for IO, and sophisticated last-level
cache partitioning mechanisms. Huggahalli et al. propose
Direct Cache Access [24], a technique to directly inject
IO data into on-chip caches. Iyer proposes dedicated data
caching in the IO hub [32]. Many software mechanisms
have been proposed to cache IO data in main memory to
reduce IO access latency [38, 67, 75]. Although all these
works deal with managing IO accesses, they do so using
caching techniques. Our work, on the other hand, proposes a
new memory system organization to effectively isolate CPU
and IO accesses from each other by separating them onto
different channels. Therefore, our approach is orthogonal to
these previously proposed approaches and can be applied in
conjunction with them, providing higher overall performance
improvement.

Memories Having Multiple Independent Ports. Kim
et al. propose OneDRAM [39], a DRAM architecture that
has two completely independent data and control ports
within a DRAM chip, developed to be shared by two
separate processing units in a mobile system. Dual-Port
SRAM (DP-SRAM) [13] is a buffer memory to connect two
interfaces having different amounts of bandwidth. Some pro-
cessors [3, 51] support DP-SRAM as part of DMA, however
DP-SRAM only buffers data that would be migrated to the
main memory through the memory channel. Video RAM
(VRAM) [17, 73] was proposed for interfacing between
the GPU and the display. All these memory architectures
are conceptually similar to our DDP-DRAM in terms of
employing multiple ports within a chip. However, DDP-
DRAM is different in three major ways. First, all these
previous architectures propose multiple control and data
ports within an SRAM/DRAM chip. In contrast, our DDP-
DRAM design adds only an additional data port, based on
the observation that the data path and port (not the control
port) are the main bottlenecks. As a result, the DRAM
chip area overhead for DDP-DRAM (1.6%) is much less
than other approaches (6.7% for OneDRAM; Section 7.4).
Second, many of these architectures have been developed
for very specific applications (DP-SRAM for embedded
systems, VRAM for display), limiting their applicability.
Third, these past approaches also add logic to support
specialized functionalities (i.e., serial interface in VRAM),
incurring higher area overhead and further limiting their
applicability. Finally and most importantly, none of these
previous works seek to isolate CPU and IO traffic as our
DDMA proposal seeks to, by employing DDP-DRAM.

High Bandwidth DRAM Channel Organization. De-
coupled DIMM [88] and Fully-Buffered DIMM [20] have

12



been proposed to increase memory system bandwidth by
adding a high speed channel interface. However, none of
them tackle the specific problem of contention between CPU
and IO accesses. Therefore, our approach is orthogonal to
these previously proposed approaches.

3D-stacked memory systems [25, 49] have been proposed
to increase memory bandwidth by exploiting a new chip-to-
chip interface, through-silicon-vias (TSVs). While the TSV
interface can increase the bandwidth between 3D-stacked
chips, the propagation of heat from the processor layer to
the 3D-stacked DRAM makes it difficult to directly integrate
them with high performance processors, requiring off-chip
connections, like a conventional memory channel. Therefore,
adopting our proposal in the context of a 3D-stacked mem-
ory system can also provide performance improvements by
making the memory channel less of a bottleneck.

Efficient In-Memory Communication. RowClone [76]
accelerates in-memory communication (in particular, row-
granularity bulk data copy/initialization) by utilizing the high
internal DRAM bandwidth. However, it supports such data
transfers only within a rank. Our mechanism, on the other
hand, is more general and enables efficient data transfers
across memories in different channels and across different
compute units and memories.

Off-Loading I/O Management. I/O processor (IOP) [30]
has been proposed to provide efficient interfaces between
processors and IO devices. IOP is conceptually similar to
our DDMA mechanism: it off-loads I/O management from
the processor. However, IOP mainly focuses on the efficient
management between different IO requests, while DDMA
mitigates the interference between CPU and IO requests in
main memory. Therefore, DDMA is orthogonal to IOP and
can be applied in conjunction with it.

Efficient Memory Scheduling and Partitioning. Many
previous works enable efficient memory channel utilization
by employing more sophisticated memory scheduling [18,
31, 42, 43, 56, 57, 82–84], application-aware memory chan-
nel and bank partitioning [54], or vertical cache/DRAM bank
partitioning [35, 48]. These works focus only on CPU traffic
and do not handle IO traffic. On the other hand, our DDMA
design provides a new data transfer mechanism for both
CPU and IO traffic by employing the Dual-Data-Port DRAM
architecture. Therefore, the DDMA framework is largely
orthogonal to these scheduling and partitioning mechanisms,
and can be applied in conjunction with them, providing
even more efficient memory channel bandwidth utilization.
Furthermore, the DDMA framework can enable the design
of new hardware and software memory scheduling and
partitioning mechanisms.

Balancing CPU and GPU Accesses. Several previous
works [4, 34, 36] aim to reduce memory interference be-
tween CPU and GPU requests by better prioritization or
throttling. Compared to these, our DDMA design not only
reduces memory interference between CPU and GPU traffic,
but more generally provides CPU and IO traffic isolation,
thereby fundamentally eliminating the interference.

9. Conclusion
We introduce a new hardware-software cooperative data

transfer mechanism, Decoupled DMA, that separates CPU
and IO requests and provides independent data channels
for them, with the goal of improving system performance.
We observe that the main memory channel is a heavily
contended resource, with CPU and IO accesses contending
for the limited memory channel bandwidth. Our approach
to mitigate this contention is to decouple IO accesses from
CPU accesses. To this end, we propose a DDMA-based
system organization using a Dual-Data-Port DRAM, with
one data port connected to the CPU and the other port
connected to the IO devices, enabling IO and CPU accesses
to be performed on different ports concurrently.

We present different scenarios where our DDMA-based
system can be leveraged to achieve high performance bene-
fits, such as CPU-GPU communication, in-memory commu-
nication and storage-memory communication. We evaluate
two scenarios across a variety of systems and workloads
and show that our proposed mechanism significantly im-
proves system performance. We also show that DDMA can
potentially be leveraged by many speculative data transfer
approaches, such as aggressive IO prefetching and specula-
tive page migration over the IO channel, without interfering
with user applications’ requests that happen on the CPU
channel. We conclude that Decoupled DMA is a substrate
that can not only mitigate bandwidth contention at the main
memory, but also provide opportunities for new system
designs (for data-intensive computing). We hope our initial
analyses will inspire other researchers to consider new use
cases for DDMA and the Dual-Data-Port DRAM.

Acknowledgments
We thank the anonymous reviewers for their valuable

suggestions. We thank the SAFARI group members for the
feedback and the stimulating research environment they pro-
vide. We acknowledge the support of our industrial partners:
Facebook, Google, IBM, Intel, Microsoft, Nvidia, Qual-
comm, Samsung, and VMware. This research was partially
supported by NSF (grants 0953246, 1212962, 1320531,
1409723), Semiconductor Research Corporation, and the
Intel Science and Technology Center for Cloud Computing.
Donghyuk Lee is supported in part by a Ph.D. scholarship
from Samsung and the John and Claire Bertucci Graduate
Fellowship.

REFERENCES
[1] “Bochs IA-32 emulator,” http://bochs.sourceforge.net/.
[2] “STREAM Benchmark,” http://www.streambench.org/.
[3] ARM, “ARM966E-S (Rev 1), Chapter 5,” http://infocenter.arm.com

/help/topic/com.arm.doc.ddi0186a/DDI0186.pdf, 2000.
[4] R. Ausavarungnirun et al., “Staged memory scheduling: achieving

high performance and scalability in heterogeneous systems,” in ISCA,
2012.

[5] M. Awasthi et al., “Handling the Problems and Opportunities Posed
by Multiple On-chip Memory Controllers,” in PACT, 2010.

[6] S. Byna et al., “Parallel I/O Prefetching Using MPI File Caching and
I/O Signatures,” in SC, 2008.

[7] R. Chandra et al., “Scheduling and Page Migration for Multiprocessor
Compute Servers,” in ASPLOS, 1994.

[8] F. Chang and G. A. Gibson, “Automatic I/O Hint Generation Through
Speculative Execution,” in OSDI, 1999.

13



[9] S. Che et al., “Accelerating Compute-Intensive Applications with
GPUs and FPGAs,” in SASP, 2008.

[10] Y. Chen et al., “Hiding I/O Latency with Pre-Execution Prefetching
for Parallel Applications,” in SC, 2008.

[11] Y. Chou et al., “Microarchitecture Optimizations for Exploiting
Memory-Level Parallelism,” in ISCA, 2004.

[12] J. Corbalan et al., “Evaluation of the Memory Page Migration
Influence in the System Performance: The Case of the SGI O2000,”
in ICS, 2003.

[13] Cypress, “Dual-Port SRAMs,” http://www.cypress.com/?iD=82.
[14] R. Das et al., “Application-to-core Mapping Policies to Reduce

Memory System Interference in Multi-core Systems,” in HPCA, 2013.
[15] H. David et al., “Memory Power Management via Dynamic Volt-

age/Frequency Scaling,” in ICAC, 2011.
[16] X. Ding et al., “DiskSeen: Exploiting Disk Layout and Access History

to Enhance I/O Prefetch,” in ATC, 2007.
[17] T. J. Ebbers et al., “Video RAM with External Select of Active Serial

Access Register,” in US Patent 5,001,672, 1991.
[18] E. Ebrahimi et al., “Parallel Application Memory Scheduling,” in

MICRO, 2011.
[19] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for

Multiprogram Workloads,” in IEEE Micro, 2008.
[20] B. Ganesh et al., “Fully-buffered DIMM memory architectures: Un-

derstanding mechanisms, overheads and scaling,” in HPCA, 2007.
[21] S. Grauer-Gray et al., “PolyBench/GPU: Implementation of Poly-

Bench codes for GPU processing,” http://www.cse.ohio-state.edu
/˜pouchet/software/polybench/GPU/index.html.

[22] S. Grauer-Gray et al., “Auto-tuning a high-level language targeted to
GPU codes,” in InPar, 2012.

[23] M. Greenberg, “LPDDR3 and LPDDR4: How Low-Power DRAM
Can Be Used in High-Bandwidth Applications,” http://www.jedec.org
/sites/default/files/M Greenberg Mobile%20Forum May %202014
Final.pdf, 2013.

[24] R. Huggahalli et al., “Direct Cache Access for High Bandwidth
Network I/O,” in ISCA, 2005.

[25] Hybrid Memory Cube Consortium, “Hybrid Memory Cube,” http://
www.hybridmemorycube.org/.

[26] Intel, “Intel 64 and IA-32 Architectures Software Developer’s Man-
ual.”

[27] Intel, “Intel Core i7-800 and i5-700 Processor Series Datasheet,”
http://download.intel.com/design/processor/datashts/322164.pdf.

[28] Intel, “Intel Data Direct I/O Technology (Intel DDIO),” http://www.
intel.com/content/dam/www/public/us/en/documents/technology-
briefs/data-direct-i-o-technology-brief.pdf.

[29] Intel, “Mobile Intel 4 Series Express Chipset Family,” http://
www.intel.com/Assets/PDF/datasheet/320122.pdf.

[30] Intel, “IOP333 I/O Processor with Intel XScale Microarchitecture,”
http://download.intel.com/design/iio/prodbref/30658301.pdf, 2011.

[31] E. Ipek et al., “Self optimizing memory controllers: A reinforcement
learning approach,” in ISCA, 2008.

[32] R. Iyer, “Performance implications of chipset caches in web servers,”
in ISPASS, 2003.

[33] JEDEC, “DDR3 SDRAM, JESD79-3F,” 2012.
[34] M. K. Jeong et al., “A QoS-aware Memory Controller for Dynam-

ically Balancing GPU and CPU Bandwidth Use in an MPSoC,” in
DAC, 2012.

[35] M. K. Jeong et al., “Balancing DRAM locality and parallelism in
shared memory CMP systems,” in HPCA, 2012.

[36] O. Kayiran et al., “Managing GPU Concurrency in Heterogeneous
Architectures,” in MICRO, 2014.

[37] C. Keltcher et al., “The AMD Opteron processor for multiprocessor
servers,” in IEEE Micro, 2003.

[38] H. Kim et al., “Increasing Web Server Throughput with Network
Interface Data Caching,” in ASPLOS, 2002.

[39] J.-S. Kim et al., “A 512 Mb Two-Channel Mobile DRAM (One-
DRAM) with Shared Memory Array,” in JSSC, 2008.

[40] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible
DRAM Simulator,” in IEEE CAL, 2015.

[41] Y. Kim et al., “Ramulator source code,” https://github.com/CMU-
SAFARI/ramulator.

[42] Y. Kim et al., “ATLAS: A Scalable and High-Performance Scheduling
Algorithm for Multiple Memory Controllers,” in HPCA, 2010.

[43] Y. Kim et al., “Thread cluster memory scheduling: Exploiting differ-
ences in memory access behavior,” in MICRO, 2010.

[44] Y. Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,” in ISCA, 2012.

[45] D. Lee et al., “Tiered-latency DRAM: A low latency and low cost
DRAM architecture,” in HPCA, 2013.

[46] D. Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing
for the Common-Case,” in HPCA, 2015.

[47] J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,”
in ISCA, 2012.

[48] L. Liu et al., “Going Vertical in Memory Management: Handling
Multiplicity by Multi-policy,” in ISCA, 2014.

[49] G. H. Loh, “3D-stacked memory architectures for multi-core proces-
sors,” in ISCA, 2008.

[50] C.-K. Luk et al., “Pin: building customized program analysis tools
with dynamic instrumentation,” in PLDI, 2005.

[51] Microchip, “Direct Mermoy Access (DMA) (Part III),” http://ww1.
microchip.com/downloads/en/DeviceDoc/70215C.pdf, 2008.

[52] Micron, “2Gb: x4, x8, x16, DDR3 SDRAM,” 2012.
[53] T. C. Mowry et al., “Automatic Compiler-Inserted I/O Prefetching for

Out-of-Core Applications,” in OSDI, 1996.
[54] S. P. Muralidhara et al., “Reducing Memory Interference in Multicore

Systems via Application-Aware Memory Channel Partitioning,” in
MICRO, 2011.

[55] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in
IMW, 2013.

[56] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors,” in MICRO, 2007.

[57] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM Sys-
tems,” in ISCA, 2008.

[58] O. Mutlu and L. Subramanian, “Research Problems and Opportunities
in Memory Systems,” in SUPERFRI, 2015.

[59] J. Nickolls et al., “Scalable parallel programming with CUDA,” in
ACM Queue, 2008.

[60] D. S. Nikolopoulos et al., “A Case for User-level Dynamic Page
Migration,” in ICS, 2000.

[61] Nvidia, “CUDA parallel computing platform and programming
model,” https://developer.nvidia.com/category/zone/cuda-zone.

[62] Nvidia, “CUDA Toolkit Documentation v7.0,” http://docs.nvidia.com
/cuda/index.html.

[63] Nvidia, “Nvidia Visual Profiler,” https://developer.nvidia.com/nvidia-
visual-profiler.

[64] Nvidia, “Tesla C2050 C2070 GPU computing processor,” http://
www.nvidia.com/tesla.

[65] Nvidia, “Compute unified device architecture programming guide,”
2007.

[66] Nvidia, “Peer-to-Peer & Unified Virtual Addressing,” http://on-
demand.gputechconf.com/gtc-express/2011/presentations/cuda
webinars GPUDirect uva.pdf, 2011.

[67] V. S. Pai et al., “IO-lite: A Unified I/O Buffering and Caching
System,” in OSDI, 1999.

[68] A. E. Papathanasiou and M. L. Scott, “Aggressive Prefetching: An
Idea Whose Time Has Come,” in HoT-OS, 2005.

[69] H. Patil et al., “Pinpointing representative portions of large Intel
Itanium programs with dynamic instrumentation,” in MICRO, 2004.

[70] R. H. Patterson et al., “Informed Prefetching and Caching,” in SOSP,
1995.

[71] PCI-SIG, “PCI Express Base Specification Revision 3.0,” https://
www.pcisig.com/specifications/pciexpress/base3/, 2010.

[72] PCI-SIG, “PCI Express 4.0 evolution to 16GT/s, twice the throughput
of PCI Express 3.0 technology,” https://www.pcisig.com/news room
/Press Releases/November 29 2011 Press Release /, 2011.

[73] R. Pinkham et al., “A 128 K× 8 70-MHz multiport video RAM with
auto register reload and 8× 4 block WRITE feature,” in JSSC, 1988.

[74] J. Power et al., “Heterogeneous System Coherence for Integrated
CPU-GPU Systems,” in MICRO, 2013.

[75] S. Seelam et al., “Application level I/O caching on Blue Gene/P
systems,” in IPDPS, 2009.

[76] V. Seshadri et al., “RowClone: Fast and Energy-efficient in-DRAM
Bulk Data Copy and Initialization,” in MICRO, 2013.

[77] V. Seshadri et al., “Page Overlays: An Enhanced Virtual Memory
Framework to Enable Fine-grained Memory Management,” in ISCA,
2015.

[78] B. Sinharoy et al., “IBM POWER7 multicore server processor,” in
IBM Journal of R&D, 2011.

[79] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a
simultaneous multithreaded processor,” in ASPLOS, 2000.

[80] Standard Performance Evaluation Corporation, “SPEC CPU2006.”
[81] J. Stuecheli et al., “The virtual write queue: coordinating DRAM and

last-level cache policies,” in ISCA, 2010.
[82] L. Subramanian et al., “MISE: Providing Performance Predictability

and Improving Fairness in Shared Main Memory Systems,” in HPCA,
2013.

[83] L. Subramanian et al., “The Blacklisting Memory Scheduler: Achiev-
ing High Performance and Fairness at Low Cost,” in ICCD, 2014.

[84] L. Subramanian et al., “The Blacklisting Memory Scheduler: Balanc-
ing Performance, Fairness and Complexity,” in CoRR abs/1505.07502,
2015.

[85] D. Tang et al., “DMA cache: Using on-chip storage to architecturally
separate I/O data from CPU data for improving I/O performance,” in
HPCA, 2010.

[86] Transaction Processing Performance Council, “TPC Benchmark,”
http://www.tpc.org/.

[87] T. Vogelsang, “Understanding the Energy Consumption of Dynamic
Random Access Memories,” in MICRO, 2010.

[88] H. Zheng et al., “Decoupled DIMM: building high-bandwidth mem-
ory system using low-speed DRAM devices,” in ISCA, 2009.

14


