
CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand† Saugata Ghose† Minesh Patel⋆ Hasan Hassan⋆
Brandon Lucia† Rachata Ausavarungnirun†‡ Kevin Hsieh†

Nastaran Hajinazar�† Krishna T. Malladi§ Hongzhong Zheng§ Onur Mutlu⋆†

†Carnegie Mellon University ⋆ETH Zürich ‡KMUTNB
�Simon Fraser University §Samsung Semiconductor, Inc.

ABSTRACT
Specialized on-chip accelerators are widely used to improve the
energy efficiency of computing systems. Recent advances in me-
mory technology have enabled near-data accelerators (NDAs), which
reside off-chip close to main memory and can yield further benefits
than on-chip accelerators. However, enforcing coherence with the
rest of the system, which is already a major challenge for accelera-
tors, becomes more difficult for NDAs. This is because (1) the cost
of communication between NDAs and CPUs is high, and (2) NDA
applications generate a lot of off-chip data movement. As a result,
as we show in this work, existing coherence mechanisms eliminate
most of the benefits of NDAs. We extensively analyze these me-
chanisms, and observe that (1) the majority of off-chip coherence
traffic is unnecessary, and (2) much of the off-chip traffic can be
eliminated if a coherence mechanism has insight into the memory
accesses performed by the NDA.

Based on our observations, we propose CoNDA, a coherence
mechanism that lets an NDA optimistically execute an NDA kernel,
under the assumption that the NDA has all necessary coherence
permissions. This optimistic execution allows CoNDA to gather
information on the memory accesses performed by the NDA and
by the rest of the system. CoNDA exploits this information to avoid
performing unnecessary coherence requests, and thus, significantly
reduces data movement for coherence.

We evaluate CoNDA using state-of-the-art graph processing and
hybrid in-memory database workloads. Averaged across all of our
workloads operating on modest data set sizes, CoNDA improves
performance by 19.6% over the highest-performance prior cohe-
rence mechanism (66.0%/51.7% over a CPU-only/NDA-only system)
and reduces memory system energy consumption by 18.0% over the
most energy-efficient prior coherence mechanism (43.7% over CPU-
only). CoNDA comes within 10.4% and 4.4% of the performance and
energy of an ideal mechanism with no cost for coherence. The be-
nefits of CoNDA increase with large data sets, as CoNDA improves
performance over the highest-performance prior coherence me-
chanism by 38.3% (8.4x/7.7x over CPU-only/NDA-only), and comes
within 10.2% of an ideal no-cost coherence mechanism.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6669-4/19/06. . . $15.00
https://doi.org/10.1145/3307650.3322266

1 INTRODUCTION
Modern systems increasingly employ specialized accelerators. Acce-
lerators offer a way to improve system performance and energy
efficiency in the face of diminishing returns from process techno-
logy scaling [22, 106]. Many recent works (e.g., [24, 31, 34, 37, 41,
42, 54, 67, 75, 77, 78, 125, 131]) propose on-chip customized har-
dware accelerators. These accelerators aim to satisfy the demands
of emerging workloads.

Recent advances in 3D-stacked memory technology enable
the practical implementation of near-data processing, where com-
putational logic is placed close to memory. In particular, near-
data accelerators (NDAs) can further boost the performance and
energy benefits that conventional accelerators promise, by redu-
cing the amount of data movement between the processor and
the main memory [2–4, 13, 21, 25–27, 35, 47, 48, 60, 76, 88, 103–
105, 113, 119, 127, 129, 130].

Despite the significant benefits of accelerators, system chal-
lenges remain a main stumbling block to the mainstream adop-
tion of specialized accelerators. The lack of an efficient commu-
nication mechanism between CPUs and accelerators creates a
significant overhead to synchronize data updates between the
two [38, 89, 96, 107, 108, 118, 123]. This inefficiency generates
unnecessary data movement, which can negate the benefits of
accelerators. In addition, programmers are often required to use
custom-designed communication mechanisms between CPU co-
res and accelerators, which leads to high programming complexity.
These challenges can be largely mitigated by making the accelerator
coherent with the rest of the system, as by doing so: (1) developers
can use the conventional shared memory programming model, al-
lowing them to use well-known synchronization mechanisms to
coordinate between the accelerators and the CPUs; and (2) accelera-
tors can efficiently share data with each other and with the rest of
the system, instead of relying on bulk data transfers [70, 107, 108].

In contrast to coherence for on-chip accelerators [70, 96, 118],
coherence for NDAs, which reside off-chip, is significantly more
challenging for two reasons. First, the energy and performance
costs of off-chip communication between NDAs and CPUs are very
high. For example, for the Hybrid Memory Cube [49], the off-chip
serial links consume as much energy to move data as the DRAM
array consumes to access the data [5, 52, 95]. In fact, the energy
and performance costs of off-chip communication between NDAs
and CPUs are orders of magnitude greater than the costs of on-
chip communication [56]. Second, target applications for NDAs
are fundamentally different from those for on-chip accelerators, as
NDA applications typically have low computational demand, suffer
from poor locality, and generate a large amount of off-chip data
movement [3–5, 13, 23, 46, 48, 88, 130]. These applications incur
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a large number of coherence misses. Given these challenges, it is
impractical for an NDA to utilize traditional coherence mechanisms
(e.g., MESI [32, 92]), which would need to send off-chip messages
for every cache miss to coherence management hardware (e.g., a
coherence directory) that reside on-chip with the CPU. The high
cost and frequency of these messages with a traditional mecha-
nism would eliminate most, if not all, of the benefits of near-data
acceleration (Section 3).

While some recent NDA proposals acknowledge the need for
NDA–CPU coherence [4, 25, 26, 126], these works largely side-
step the issue by assuming that the NDA and CPU share only a
limited amount of data. While this is true for some NDA applicati-
ons [25, 27, 59, 97, 126], our application analysis indicates that this
is not the case for many other important NDA applications. We com-
prehensively analyze two important classes of such applications:
graph processing frameworks and hybrid in-memory databases. We
make a key observation that not all portions of these applications be-
nefit from being executed on the NDA, and the portions that remain
on the CPU (called CPU threads) often concurrently access the same
region of data (e.g., graphs, database data structures) as the portions
executed on the NDA (called NDA kernels), leading to significant
data sharing. To understand the characteristics of sharing, we delve
further into the memory access patterns of the CPU threads and
NDA kernels, and we make a second key observation: while CPU
threads and NDA kernels share the same data regions, they typi-
cally do not collide concurrently on (i.e., simultaneously access) the
same cache lines. Furthermore, in the rare case of collisions, the
CPU threads only read those cache lines, meaning that they rarely
update the same data that an NDA is actively working on.

Using the major insights we obtain from our application analysis,
we perform a design space exploration and examine three existing
approaches for coherence: non-cacheable regions [3, 21, 25, 27,
88, 97], coarse-grained coherence [25, 26, 74, 121, 126, 129], and
fine-grained coherence [13]. We find that (1) all three approaches
eliminate a significant portion of the potential benefits of NDAs,
as they generate a large amount of off-chip coherence traffic, and
in some cases prevent concurrent execution of CPUs and NDAs;
and (2) the majority of off-chip data movement (i.e., coherence
traffic) generated by these approaches is unnecessary, primarily
because the approaches pessimistically assume that every memory
access needs to acquire coherence permissions or that shared data
cannot be cached. We find that much of this unnecessary off-chip
coherence traffic can be eliminated if the coherence mechanism
has insight into what part of the shared data is actually accessed
by NDA kernels and CPU threads. Unfortunately, this insight is not
available before execution for manyworkloads with irregular access
patterns. For example, in many pointer chasing or graph processing
workloads, the path taken during pointer or graph traversal is not
known prior to execution [3, 48, 66].

Based on these observations, we find that an optimistic appro-
ach to coherence can address the challenges of NDA coherence.
An optimistic execution model for NDA enables us to gain insight
into the memory accesses before any coherence permissions are
checked, and thus, enforce coherence with only the necessary data
movement. To this end, we propose Coherence for Near-Data Acce-
lerators (CoNDA), a mechanism that lets the NDA optimistically
start execution assuming that it has coherence permissions, wit-
hout issuing any coherence messages off-chip. CoNDA executes
NDA kernels in portions to keep hardware overheads low (see
Section 5.5). While optimistically executing a portion of an NDA

kernel, CoNDA records the memory accesses inside the NDA to
gain insight into what part of the shared data is actually accessed by
the kernel. During optimistic execution, CoNDA does not commit
any data updates. When CoNDA finishes optimistic execution for
the NDA kernel portion, it exploits the recorded information to
check which coherence operations are necessary, in order to avoid
off-chip data movement for unnecessary coherence operations. If
the NDA kernel portion does not need coherence operations for any
of its data updates, CoNDA commits the data updates. If the NDA
kernel portion actually requires any coherence operations, CoNDA
invalidates the uncommitted data updates, performs the needed
coherence operations, and re-executes the NDA kernel portion.

Our optimistic execution model is inspired by Optimistic Concur-
rency Control (OCC) [71], which was first proposed in the database
community and later harnessed for various purposes (e.g., Tran-
sactional Memory [7, 40, 44, 45, 84, 109], enforcing sequential con-
sistency [16], deterministic shared memory [18]). The optimistic
execution model fits very well within the context of NDA coherence
for three reasons. First, the optimistic approach makes it possible
to identify the necessary coherence traffic, by gaining insight into
the memory accesses performed by the NDA and by the rest of
the system before generating off-chip coherence requests. Second,
our application analysis shows that CPU threads rarely update
the same data that an NDA is actively working on (which is also
true for other applications that do not have a high degree of data
sharing [25, 27, 59, 97, 126]). This behavior leads to a very low
re-execution rate of NDA kernels, which is one of our key moti-
vations behind adopting an optimistic execution model for NDA
coherence. Third, NDAs are often relatively simple fixed-function
accelerators or small programmable cores that lack sophisticated
ILP techniques [3, 4, 13, 21, 26, 48, 76, 88, 97, 121, 126]. As a result,
the cost of kernel re-execution on an NDA is much lower than that
on a sophisticated out-of-order CPU core.

We find that CoNDA is highly effective in efficiently enforcing
coherence between the CPU threads and NDAs. Compared to three
major existing coherence mechanisms, CoNDA improves perfor-
mance by 19.6% over the highest performance prior mechanism
and reduces memory system energy by 18.0% over the most energy-
efficient prior mechanism, on average across our 16-thread worklo-
ads operating on modest data set sizes. Over a CPU-only system
with no NDAs, CoNDA improves performance by 66.0% and reduces
memory system energy consumption by 43.7%. Over an NDA-only
system, CoNDA improves performance by 51.8%. These benefits
arise because CoNDA eliminates the majority of unnecessary co-
herence traffic, and is able to retain almost all of the benefits of
near-data acceleration. CoNDA comes within 10.4% and 4.4% of the
performance and energy, respectively, of an ideal NDA mechanism
that incurs no penalty for coherence.

CoNDA is an efficient mechanism whose benefits increase as
the application data set size increases. This is because a larger data
set results in a higher cache miss rate, which generates more cohe-
rence traffic over the off-chip channel and, thus, provides greater
optimization opportunities for CoNDA. When we increase the data
set sizes by an order of magnitude, we find that CoNDA improves
performance by 8.4x over CPU-only, 7.7x over NDA-only, and 38.3%
over the best prior coherence mechanism, coming within 10.2% of
ideal coherence.

We make the following key contributions in this work:
• We analyze two important classes of applications, and show that
(1) there is a significant amount of data sharing between CPU
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threads and NDAs, (2) CPU threads and NDAs often do not access
the same cache lines concurrently, and (3) CPU threads rarely
update the same data that NDAs are actively working on.

• We perform an extensive design exploration and show that (1) the
poor handling of coherence eliminates much of an NDA’s per-
formance and energy benefits, (2) the majority of off-chip data
movement (i.e., coherence traffic) generated by a coherence me-
chanism is unnecessary, and (3) a significant portion of unneces-
sary coherence traffic can be eliminated by having insight into
which memory accesses actually require a coherence operation.

• We propose CoNDA, a new coherence mechanism that optimisti-
cally executes code on an NDA to gather information on memory
accesses. Optimistic execution enables CoNDA to identify and
avoid performing unnecessary coherence requests. As our evalu-
ation shows, this reduces off-chip data movement, allowing NDA
execution under CoNDA to always outperform prior coherence
mechanisms (as well as CPU-only and NDA-only execution).

2 BACKGROUND
2.1 Near-Data Processing
Since the early 1970s, many works examined various forms of near-
data processing [20, 28, 55, 68, 79, 87, 91, 93, 110, 116]. With the
advent of 3D-stacked memories, we have seen a resurgence of near-
data processing proposals. Some recent proposals (e.g., [3–5, 13, 21,
26, 27, 35, 36, 47, 48, 59, 88, 94, 126, 127, 129, 130]) add compute units
within the logic layer of 3D-stacked memory [49, 53, 64, 73]. These
works primarily focus on the design of the underlying logic that is
placed within memory, and in many cases propose special-purpose
near-data accelerators that cater to a limited set of applications.

2.2 Baseline Architecture
Figure 1 shows the baseline organization of the architecture we as-
sume in this work, which includes programmable or fixed-function
near-data accelerators (NDAs). Each NDA executes an NDA kernel
that is invoked by the CPU threads. In our evaluation, we imple-
ment programmable NDAs consisting of in-order cores that are
ISA-compatible with the CPU cores, but that do not have large ca-
ches or any sophisticated ILP techniques. Each NDA includes small
private L1 I/D caches. While our evaluations use a programmable
NDA, CoNDA can be used with any programmable, fixed-function,
or reconfigurable NDA.

...

Mem Ctrl

Mem Ctrl
Mem Ctrl...

CPU
DRAM

NDA Logic
NDA Logic

NDA Logic

Programmable 
Accelerator

Cache

DRAM

Figure 1: High-level organization of our NDA architecture.

3 MOTIVATION
Enabling coherence for near-data accelerators provides two key be-
nefits: (1) programmers can use the well-known traditional shared
memory model to program systems with near-data accelerators,
and (2) we can simplify how accelerators communicate and share
data with each other and with the rest of the system. In this section,

we analyze the data sharing characteristics of several important
data-intensive workloads (Section 3.1), and then study how existing
coherence mechanisms perform for these workloads (Section 3.2).

3.1 Application Analysis
An application can benefit from near-data acceleration when its
memory-intensive parts are offloaded to NDAs. The memory-
intensive parts of an application generate a significant amount
of data movement, and often exhibit poor temporal locality, lea-
ding to high execution times and energy consumption on a CPU.
In the NDA, such application parts can benefit from the high-
bandwidth, low latency and low-energy memory access available
in 3D-stacked memory. However, the compute-intensive parts of
the application should remain on the CPU cores to maximize perfor-
mance [4, 13, 26, 47, 88, 104], especially if they can exploit the CPU
cache hierarchy well or benefit from sophisticated ILP techniques.
Sharing Data Between NDAs and the CPU. Because many ap-
plications have compute-intensive parts that should be executed
on the CPU, NDA kernels and CPU threads may share data with
each other, depending on how an application is partitioned. While
some applications [25, 27, 59, 97, 126] can be partitioned to limit
this data sharing, we make a key observation that this is not the case
for many important classes of applications.

A major example is multithreaded graph processing frameworks,
such as Ligra [111], wheremultiple threads operate in parallel on the
same shared in-memory graph [65, 111, 128]. Each thread executes
a graph algorithm, such as PageRank [15]. We rigorously study a
number of these algorithms [111] and find that when we carefully
convert each of them for NDA execution, only some portions of each
algorithm are well-suited for NDA, while the remaining portions
perform better if they stay on the CPU. With this partitioning, the
CPU portion of each thread executes on the CPU cores while the
NDA portions (sometimes concurrently) execute on the near-data
accelerators, with all of the threads sharing the graph and other
intermediate data structures. For example, we find that for the Radii
and PageRank algorithms running on the arXiv input graph, 60.1%
and 71.0% of last-level cache (LLC) misses generated by the CPU
threads access the shared data (e.g., the graph, intermediate data
structures) after we convert these algorithms for NDA execution.

A second major example is modern in-memory databases. To-
day, analytical and transactional operations are combined into a
single hybrid transactional/analytical processing (HTAP) database
system [8, 9, 58, 72, 80, 82, 101]. The analytical queries of these hy-
brid databases are well-suited for NDA execution, as they have long
execution times (i.e., the queries run for long enough to amortize
the overhead of dispatching the query to the NDA) and touch a
large number of rows, leading to a large amount of randommemory
accesses and data movement [67, 83, 126]. In contrast, even though
transactional queries access the same data, they perform better
if they stay on the CPU, as they have short execution times, are
latency-sensitive, and have cache-friendly access patterns. In such
workloads, concurrent accesses from both NDA kernels and CPU
threads to shared data structures are inevitable.

Many NDA workloads exhibit the same characteristics that
we find in these applications. In several workload domains, re-
cent works show that only parts of an application benefit from
NDA execution, while the rest of the application should stay on
CPUs [4, 13, 26, 47, 88, 104]. These NDA kernels often share many
data structures with the CPU threads. For example, in TensorFlow
Mobile [33], prior work shows that two functions (packing and
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quantization) should be NDA kernels [13]. These kernels share
the neural network data structures (e.g., matrices) with the CPU
threads, which execute functions such as convolution and matrix
multiplication.
SharedDataAccess Patterns.To further understand data sharing,
we analyze thememory access patterns of the CPU threads andNDA
kernels. We make a second key observation: while CPU threads and
NDA kernels share data structures, they often do not concurrently
access the same elements (e.g., a shared graph node or database row)
in these structures. For example, when we analyze the Connected
Components and Radii algorithms from Ligra [111] using the arXiv
input graph, only 5.1% and 7.6%, respectively, of the CPU accesses
collide with (i.e., access the same cache line as) accesses from the
NDA. Across all of our applications, only 11.2% of these collisions
(less than 1% of all accesses) are writes from a CPU thread, and all
other collisions are CPU thread reads.

The low rate of collisions with data updates (i.e., writes) is intui-
tive from a programming perspective, because when programmers
offload some of the code to an accelerator, they try to avoid having
the CPU thread update the data that the accelerator is working
on. Such behavior is a common characteristic of many accelerator-
centric applications [24, 50, 51, 54, 67, 77, 99].

3.2 Analysis of NDA Coherence Mechanisms
We explore three types of existing mechanisms that can be used to
enforce coherence between CPU threads and NDAs.
Non-Cacheable Approach. One approach to sidestep coherence
is to mark any data accessed by the NDA (i.e., the NDA data region)
as non-cacheable by the CPU [3]. This ensures that any CPU writes
are immediately visible to the NDA. While this works well for
applications where the CPU rarely accesses the NDA data region,
it performs poorly for many applications where the CPU accesses
the region often. For Ligra [111] applications with a representative
input graph (arXiv), we find that 38.6% of all accesses made by CPU
threads to memory are to the NDA data region.

Figures 2 and 3 show the memory system energy consumption
and speedup of different coherence mechanisms for a system with
NDAs, normalized to a CPU-only baseline where the entire applica-
tion runs on the CPU. In the figures, we also show a mechanism
called Ideal-NDA, where there is no energy or performance penalty
for coherence. We observe from the figures that the non-cacheable
approach (NC) fails to provide any energy savings (and, in fact,
greatly increases energy consumption), and on average performs
6.0% worse than CPU-only. Therefore, NC is a poor fit for applicati-
ons where the NDA and CPU threads share data, as it is unable to
realize any benefit from NDA in our workloads.
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Figure 2: Memory system energy with existing coherence
mechanisms.

Coarse-Grained Coherence.A second approach is coarse-grained
coherence, where there is a single coherence permission that applies
to the entire NDA data region. This works well when there is only
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Figure 3: Speedup with existing coherence mechanisms.

a limited amount of data shared between the CPU threads and
the NDA kernel, but incurs high overheads when there is a high
amount of data sharing and there is no easy way to find what part
of the data will be accessed by the NDA before execution (e.g.,
due to irregular access patterns). The CPU must flush all dirty
cache lines in the NDA data region every time an NDA acquires
coherence permissions for the region, even if the NDA does not
access most of the data in the region. This results in a significant
amount of unnecessary data movement. For example, with only
four CPU threads, PageRank flushes 227x the number of cache
lines actually accessed by the NDA. While coherence at a smaller
granularity (e.g., one entry per page [26]) can reduce this overhead
in some cases, the overhead remains high for the many applications
that have irregular access patterns. For example, pointer chasing
applications [3, 48, 66] access only a few cache lines in each page,
but still require all changes to the page to be flushed.

Some instances of coarse-grained coherence use coarse-grained
locks to provide the CPU or NDA with exclusive access to a coarse-
grained region. Without exclusive access, data can ping-pong be-
tween the CPU and the NDA when they concurrently access the
NDA data region, increasing data movement. Coarse-grained locks
avoid ping-ponging by having the NDA acquire exclusive access to
a region for the duration of the NDA kernel. Our analysis shows that
coarse-grained locks greatly limit performance when any sharing
exists, by forcing CPU threads and NDA kernels to serialize. Avera-
ged across all Ligra applications running on a representative input
graph (Gnutella), coarse-grained locks block 87.9% of the CPU’s me-
mory accesses during NDA execution. As Figures 2 and 3 show, the
high impact of unnecessary flushes and serialization cause coarse-
grained locks (CG in the figures) to eliminate a large portion of the
energy and performance benefits that Ideal-NDA provides. In fact,
CG performs 0.4% worse than CPU-only, on average.

We conclude that while CG works well in some cases, it is not
suitable for many important NDA applications.
Fine-Grained Coherence. Traditional, or fine-grained, coherence
protocols (e.g., MESI [32, 92]) have two major qualities well sui-
ted for applications with irregular memory accesses (e.g., graph
workloads, databases, pointer chasing). First, fine-grained cohe-
rence acquires coherence permissions for only the pointers that are
actually traversed during pointer chasing. The path taken during
pointer traversal is not known ahead of time. As a result, even
though a thread often accesses only a few dispersed pieces of the
data structure, a coarse-grained mechanism has no choice but to
acquire coherence permissions for the entire data structure. Fine-
grained coherence allows the CPU or NDA to acquire permissions
for only the pieces of data in the data structure that are actually
accessed. Second, fine-grained coherence can ease programmer
effort when developing applications for NDAs, as multithreaded
programs already use this programming model.

Unfortunately, if an NDA participates in fine-grained coherence
with the CPU, it has to exchange coherence messages for every
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cache miss with the CPU directory over a narrow pin-limited bus.
Since NDA kernels are memory-intensive and exhibit poor tem-
poral locality, this fine-grained message exchange generates large
amounts of off-chip data movement. A large amount of those cohe-
rence messages are unnecessary, as our analysis from Section 3.1
shows that the vast majority of NDA accesses do not collide with
CPU writes and, thus, do not need coherence.

We apply a number of optimizations to fine-grained coherence to
reduce the amount of off-chip data movement. We enforce exclusive
ownership of each cache line by either the NDA or the CPU. We add
a local NDA directory in DRAM to maintain coherence between
multiple NDAs. We add a bit to each entry in both the CPU and
NDA directories, to mark the cache lines that are owned by an NDA.
If a coherence miss occurs for a cache line owned by the NDA, this
means that the CPU also does not have a copy of the cache line,
and no request needs to be sent to the CPU. Unfortunately, even
with these optimizations, fine-grained coherence using the MESI
protocol [32, 92] (FG) eliminates a significant portion of the energy
and performance benefits of Ideal-NDA, as shown in Figures 2 and
3. This is because the optimized FG (1) still needs to send off-chip
coherence requests to acquire ownership; (2) is unable to avoid
the majority of off-chip coherence requests, as the NDA kernel
has a high number of cache misses that generate many coherence
requests; and (3) still causes data to ping-pong between the CPU
and the NDA, generating many off-chip coherence messages for a
single cache line.

We conclude that while FG acquires permissions for only cache
lines that are actually accessed, it still causes a lot of unnecessary
off-chip data movement.
Limitations of Existing CoherenceMechanisms. The majority
of unnecessary off-chip data movement generated by existing cohe-
rence mechanisms is due to a lack of insight into when coherence
requests are actually necessary during NDA kernel execution. Wit-
hout having any such insight, existing mechanisms preemptively
issue coherence requests, many of which are not needed, causing
significant off-chip data movement to maintain coherence. As a
result, none of these mechanisms can exploit the potential energy
and performance benefits of NDAs.

4 OPTIMISTIC NDA EXECUTION
As we see in Section 3, existing coherence mechanisms can elimi-
nate the benefits of near-data acceleration for many important appli-
cation classes. We find that the majority of off-chip data movement
generated by these coherencemechanisms is unnecessary, primarily
because the mechanisms pessimistically assume that (1) every me-
mory operation needs to acquire coherence permissions or (2) data
shared between CPUs and NDAs cannot be cached. Much of this
unnecessary movement can be eliminated if a coherence mecha-
nism has insight on what part of the shared data is actually accessed.
Based on our observations from Section 3, we propose to use op-
timistic execution for NDAs. When executing in optimistic mode,
an NDA gains insight into its memory accesses by tracking the
accesses without issuing any coherence requests. When optimistic
execution is done, the NDA uses the tracking information to per-
form necessary coherence requests for only the parts of the shared
data that were actually accessed during execution, which minimizes
coherence-related data movement.

In this section, we discuss our optimistic execution model and
how it retains existingmemory consistency guarantees (Section 4.1),
and analyze when coherence messages are necessary in optimistic

mode (Section 4.2). We assume a sequentially-consistent memory
model in this section, but our execution model can easily be applied
to other common memory consistency models, such as the x86-TSO
model (Section 5.8).

In Section 5, we propose CoNDA, a coherence mechanism for
NDAs that makes use of optimistic execution.

4.1 Execution Model
An application running on the CPU can issue a call to start execu-
ting code on an NDA. When the NDA starts executing, the CPU
threads may execute concurrently. The NDA executes in optimistic
mode, where it assumes that it always has coherence permissions
on the cache lines that it uses, without checking the CPU coherence
directory. This avoids the need for off-chip coherence communica-
tion during execution. Because the NDA has not actually checked
coherence, it ensures that none of its data updates are committed
to memory during optimistic execution.

When optimistic execution stops, the system must determine
whether it can commit the data updates from optimistic execution.
This requires the NDA to determine if any coherence requests
should have been issued to guarantee correctness. To keep the
commit mechanism simple, our execution model makes use of
coarse-grained atomicity, where allmemory updates by the NDA are
treated as if they all occur at the moment when optimistic execution
stops. Thus, for all memory operations that take place while the
CPU threads and the NDA execute concurrently, the CPU thread
memory operations are effectively ordered before the NDA memory
operations, which is a valid ordering for sequential consistency.
When the NDA attempts to commit, the system first checks to see if
any coherence violation happened (see Section 4.2). If no violation
occurred, the NDA data updates are committed. Otherwise, the
NDA must resolve any violations by performing the necessary
coherence operations, and re-execute the optimistically-executed
code. Because CPU threads and NDA kernels rarely access the
same cache lines during concurrent execution (see Section 3.1),
re-execution happens rarely, as we show in Section 7.2, making
optimistic execution efficient.

We do not expose the optimistic execution behavior of the NDA
to programmers. Our execution model ensures that memory consis-
tency is not violated, and thus, the programmer can treat the system
like a conventional multithreaded system. To make use of near-data
acceleration, a programmer simply needs to insert macros to de-
marcate portions of the application that should be executed on the
NDA (see Section 5.1), and can treat the NDA kernel as just another
thread. As is the case for concurrent CPU threads, the programmer
assumes that (1) instructions across multiple threads can be interle-
aved in any order acceptable under the memory consistency model
of the system, and (2) they need to use synchronization primitives
if they want to enforce a specific ordering. Our mechanism supports
synchronization primitives (see Section 5.7).

4.2 Identifying Necessary Coherence Requests
In order to maintain coherence, the NDA must perform any ne-
cessary coherence operations before committing its uncommitted
memory operations. Coherence requests are necessary only when
the NDA and/or a CPU thread update a cache line that both the
NDA and the CPU thread access. Figure 4 shows an example of how
CPU and NDA operations are ordered. We discuss three possible in-
terleavings of CPU and NDA memory operations to the same cache
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Figure 4: Example timeline of optimistic NDA execution.

line, and show that only one of the interleavings leads to a violation
and requires NDA re-execution to ensure correct execution.
Case 1: NDA Read and CPU Write (to the Same Cache Line).
This case triggers re-execution. As we discuss in Section 4.1, all NDA
operations are ordered to take place once optimistic execution stops.
As a result, any CPU memory accesses that take place during opti-
mistic mode are ordered before any NDA operations. For example,
the NDA read (e.g., N1 in Figure 4, which reads cache line Z) should
be ordered after the CPU write to the same cache line (e.g., C4).
However, since the NDA did not issue a coherence request before
performing the read operation, it did not read the updated value that
was written by the CPU. In order to maintain coherence, the value
written by the CPU must be flushed to DRAM, and the NDA must
re-execute to ensure correct ordering (e.g., N1–N3 are re-executed
as N4–N6).

Note that the CPU may perform the write (e.g., C1 to cache
line X) before optimistic execution begins. This can still require re-
execution if the updated cache line is not written back to memory
before the NDA performs the read (e.g., N3).
Case 2: NDA Write and CPU Read (to the Same Cache Line).
This case does not trigger re-execution. In our execution model, any
read to a cache line by the CPU during optimistic mode execution
is ordered before the NDA’s write to the same cache line. As a
result, the CPU should not read the value written by the NDA. For
example, NDA write N5 to cache line Y in Figure 4 is effectively
ordered to take place after CPU read C6 to the same cache line. To
ensure that the CPU does not read the value written by the NDA,
the NDA maintains the updated value in a data update buffer until
it can confirm that there is no need for it to re-execute instructions.
Once this is confirmed, the NDA commits the write to memory, and
invalidates any stale copies of the data in the CPU cache.

If the programmer wants to guarantee that the CPU read sees the
NDA’s write, the program must use synchronization primitives to
enforce this ordering (see Section 5.7). This is true in conventional
CPU multithreading as well.
Case 3: NDAWrite and CPUWrite (to the Same Cache Line).
This case does not trigger re-execution. Similar to Case 1, the NDA
write (e.g., N5) takes place after the CPU write (e.g., C5), and the
NDA holds the update in the data update buffer. However, when
the NDA is ready to commit its updates (i.e., there is no need to
re-execute), it cannot simply flush the old cache line in the CPU.
This is because the CPU and the NDA may have written to different
words in the same cache line. To ensure that no updates are lost, the
data update buffer must include a per-word dirty bit mask, as in [74].
When the system commits the NDAwrite, it first retrieves the latest
version of the cache line from the CPU, and then overwrites only
the words in the cache line that were written to by the NDA using

the values of those words that are in the data update buffer. Again, if
the programmer wishes to enforce a specific ordering of the writes,
they must use a synchronization primitive (e.g., a write fence), as
in conventional CPU multithreading.

5 CONDA ARCHITECTURE
In this section, we describe Coherence for Near-Data Accelerators
(CoNDA), an efficient coherence mechanism that makes use of
optimistic NDA execution (see Section 4) to avoid unnecessary
off-chip coherence traffic. Figure 5 shows the high-level operation
of CoNDA. In CoNDA, when an application wants to launch an
NDA kernel (Section 5.1), the NDA begins executing the kernel in
optimistic mode ( 1 in Figure 5; Section 5.2). While the NDA kernel
executes, all CPU threads continue to execute normally, and never
make use of optimistic execution.
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CPU Thread
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Figure 5: High-level operation of CoNDA.

To gain the insight needed to perform only the necessary cohe-
rence requests, CoNDA efficiently tracks the addresses of all NDA
reads, NDA writes, and CPU writes during optimistic execution
using signatures ( 2 and 3 ; Section 5.3). Once optimistic execution
starts, any NDA data updates are initially flagged as uncommitted
(Section 5.4). These updates cannot be committed until all neces-
sary coherence requests are performed. When optimistic execution
is done (Section 5.5), CoNDA attempts to resolve coherence ( 4 ;
Section 5.6). The NDA transmits its signatures to the CPU, and
CoNDA compares the NDA signatures with the CPU signatures to
identify the necessary coherence requests. If CoNDA detects any
coherence violation (see Section 4.2), (1) the NDA invalidates all
of its uncommitted updates; (2) the CPU resolves the coherence
requests, performing only the necessary coherence operations (in-
cluding any cache line updates); and (3) the NDA re-executes the
uncommitted portion of the kernel. Otherwise, CoNDA performs
the necessary coherence operations, clears the uncommitted flag
for all data updates in the NDA L1 cache (i.e., any uncommitted
data updates are committed), and resumes optimistic execution if
the NDA kernel is not finished.

To preserve the conventional multithreaded programming in-
terface, CoNDA correctly supports synchronization primitives
(Section 5.7). CoNDA enables optimistic execution, ensures cor-
rectness, and reduces unnecessary coherence traffic compared to
state-of-the-art coherence mechanisms, all with a low hardware
overhead (Section 5.9).

5.1 Program Interface
We provide a simple interface for programmers to port applications
to CoNDA. The programmer identifies the portion(s) of the code to
execute on an NDA using two macros (NDA_begin and NDA_end).
The compiler converts the macros into instructions that we add to
the ISA, which trigger and end NDA kernel execution, respectively.
To reduce tracking overhead, CoNDA needs to know which pages
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in memory might be accessed by an NDA, which we call the NDA
data region. The NDA data region can be identified by a compiler, or
can be manually annotated by the programmer. CoNDA stores this
information by adding one bit to each page table entry, which when
set indicates that CoNDA needs to track reads from and writes to
this page during optimistic execution.

5.2 Starting Optimistic NDA Execution
CoNDA starts optimistic execution when an NDA kernel is laun-
ched, or after a successful coherence resolution operation. When
an NDA kernel is first launched, the CPU dispatches the kernel’s
starting PC and any live-in registers to a free NDA. Any time opti-
mistic execution starts, CoNDA takes a checkpoint of the current
NDA state, which consists of the NDA’s PC and software-visible
registers. This checkpoint is used in case commit fails and the NDA
needs to re-execute.

5.3 Signatures
CoNDA uses signatures to track whether any coherence reque-
sts are necessary during optimistic execution. CoNDA uses this
information once optimistic execution ends to perform only the
necessary coherence requests.
Implementation. To reduce the amount of storage needed to track
coherence requests without missing any addresses that need to be
checked for correct coherence, we implement signatures in CoNDA
using fixed-length parallel Bloom filters [11]. In a parallel Bloom
filter, an N -bit signature is partitioned intoM segments. Each seg-
ment in the signature employs a unique hash function (H3 [100]).
When an address is added to the signature, each segment’s hash
function maps the address to a single bit in the segment, which
we call the hashed value, and the bit is set to 1. Using a parallel
Bloom filter, CoNDA can perform three operations. First, it can
check if a filter contains a given memory address, by generating
the hashed values for the address and checking if they are set in all
M segments. Second, it can retrieve a list of all addresses in the filter,
by using the signature expansion technique [16, 17]. Third, it can
quickly compare two filters to see if both filters might contain one
or more of the same addresses, by taking the bitwise AND of the
two signatures to generate the filter intersection and checking that
each segment in the intersection has at least one bit set (indicating
at least one matching address that is shared by both filters).

Once a bit is set in a parallel Bloom filter segment, the bit remains
set until the filter is reset. As a result, there are no false negatives.
This ensures that CoNDA checks all of the addresses that are added
to the signatures during optimistic execution. Due to aliasing of
some hashed values, Bloom filters can introduce a limited number
of false positives (see below), which may lead to unnecessary re-
executions without affecting correctness. The parallel Bloom filters
in CoNDA are reset every time optimistic execution starts.
Tracking Memory Operations During NDA Execution.
CoNDA maintains three sets of signatures during optimistic
execution, as shown in Figure 6. The NDAReadSet records the ad-
dresses of all cache lines read from by the NDA. The NDAWriteSet
records the addresses of all cache lines written to by the NDA.
The CPUWriteSet records the addresses of all cache lines in the
NDA data region that (1) a CPU thread writes to during optimistic
execution, or (2) have dirty copies in a CPU cache before an NDA
kernel starts. The CPU scans the caches before launching an NDA
kernel to find dirty cache lines that reside in the NDA data region.

Our evaluation shows that across the entire program, the total time
spent on scanning accounts for less than 1% of the overall execution
time (Section 7), including TLB overheads. This is because the NDA
kernels are very data intensive, and require orders of magnitude
more time to execute than scanning the CPU L1 cache tag stores,
which can be done in parallel across caches.

In the unlikely case that scanning becomes a performance bottle-
neck (which we never observe in our experiments), we can optimize
the scan operation by introducing a Dirty-Block Index [102] to track
dirty NDA data.
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Figure 6: Hardware additions to support CoNDA.

Signature Size. Each Bloom filter is composed of a fixed-length
register. The size of the register determines the maximum number
of addresses can be added to the filter without exceeding a given
false positive rate. Once the maximum number of addresses is
reached in any signature, CoNDA stops optimistic execution and
begins resolving necessary coherence requests for the NDA kernel.
We size the signatures in CoNDA to balance the storage overhead,
the false positive rate (as false positives can cause unnecessary re-
executions), how frequently optimistic execution must be stopped,
and the amount of data movement needed to transfer signatures
from the NDA to the CPU when CoNDA performs any necessary
coherence requests.

The NDAReadSet and NDAWriteSet each use one 256 B register
that is split into four segments. The CPUWriteSet uses eight 256 B
Bloom filters. This is because the CPUWriteSet does not need to
be transmitted off-chip during coherence resolution, so we can use
multiple filters to increase the addresses that the CPUWriteSet can
hold. We use a round robin policy to select which of the filters an
address is added to. We target a 20% false positive rate (worst case)
in CoNDA, which allows us to hold up to 250 addresses in each
256 B filter. Our Bloom filter analysis is based on mathematical
derivations in prior work [100].

5.4 Buffering Uncommitted Values
Each NDA includes a small private L1 data cache (see Section 2.2).
During optimistic execution, when an NDA performs a write ope-
ration, the write value cannot be committed to memory until
CoNDA can perform the necessary coherence operations. As a
result, the NDA buffers the updated data value in the L1 cache,
using techniques similar to prior works on speculative execu-
tion [7, 16, 39, 40, 44, 45, 69, 71, 84, 115]. We add a per-word dirty
bit mask [74] to each cache line, as shown in Figure 6, to mark all
uncommitted data updates.

5.5 Ending Optimistic NDA Execution
CoNDA dynamically determines when to end optimistic execution.
Execution in optimistic mode stops when one of three events occurs:
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(1) the NDA reaches the end of the NDA kernel, (2) the NDA L1
data cache needs to evict a speculative cache line, or (3) one of
the signatures cannot hold more addresses without exceeding the
false positive rate. To determine if a signature cannot hold more
addresses, CoNDA maintains a counter for the number of addresses
added to each signature since optimistic execution started.

5.6 Identifying Necessary Coherence Requests
Once optimistic execution ends, CoNDA uses the signatures to
check for and resolve any necessary coherence operations, and
attempts to commit any uncommitted NDA data updates. The
NDAReadSet and NDAWriteSet are sent from the NDA to coherence
resolution logic residing in the CPU. The coherence resolution lo-
gic then calculates the intersection of the NDAReadSet and the
CPUWriteSet. There are two cases, depending on whether the in-
tersection contains a match.

Case 1 (Conflict). If the intersection contains a match, a cohe-
rence violation may have occurred (i.e., an NDA read and a CPU
write may have been to the same address; see Section 4.2). This
means that the pending NDA data updates cannot be committed, as
they may violate correct memory ordering. Instead, CoNDA must
perform the necessary coherence operations and then re-execute
the NDA operations. To do so, the CPU flushes any dirty cache
lines that match addresses in the NDAReadSet to DRAM, and places
a copy of these cache lines in the NDA L1 cache. The CPU uses the
signature expansion method [16, 17] to decode the CPUWriteSet
into corresponding addresses, and then checks if those addresses
are present within the NDAReadSet. Once the dirty cache line flush
completes, the coherence resolution logic sends a message to the
NDA that the commit attempt failed. The NDA invalidates all un-
committed data in its L1 cache, rolls back to its checkpointed state,
and restarts optimistic execution. If the same portion of the NDA
kernel fails commit N times (we empirically set N to three), CoNDA
guarantees forward progress of the NDA by acquiring a lock for
each cache line in the NDAReadSet(e.g., by temporarily setting the
page table read-only bit for any page that contains a cache line in
the NDAReadSet). This ensures that the kernel does not roll back
anymore, and avoids livelock.

Case 2 (No Conflict). If no match is found in the intersection
of the NDAReadSet and the CPUWriteSet, then no memory orde-
ring violation exists, and the commit process starts to perform
any necessary coherence operations. First, the coherence resolu-
tion hardware computes the intersection of the NDAWriteSet and
the CPUWriteSet. If an overlap is found, CoNDA uses signature
expansion (see Section 5.3) to identify which cache lines need to
be merged (see Section 4.2), and sends these cache lines to the
NDA for merging, which ensures write-after-write coherence. Se-
cond, all cache lines in the CPU cache that match an address in
the NDAWriteSet are invalidated. Third, a message is sent to the
NDA, which clears the uncommitted flag on all NDA cache lines
and allows the lines to be written to DRAM. Finally, if the NDA
kernel is not finished, the NDA continues executing the kernel by
starting optimistic execution from the instruction after the commit.

During coherence resolution, CPU threads continue to execute,
but all coherence directory entries for cache lines in the NDA data
region are locked to ensure atomicity. If a thread accesses any
cache line in the NDA region, the thread stalls until the coherence
resolution completes.

5.7 Support for Synchronization Primitives
CoNDA allows a programmer to use traditional synchronization
primitives to manually order memory operations and provide ato-
micity. When an NDA reaches a synchronization primitive (e.g.,
Acquire, Release), it performs three steps. First, CoNDA ends op-
timistic execution, and commits any pending speculative updates
before the primitive. This ensures that there are no remaining me-
mory operations that must be ordered before the synchronization
primitive, preserving the memory ordering expected by the pro-
grammer. Second, the NDA executes the primitive non-speculatively,
performing any coherence operations necessary for the primitive.
By executing the primitive non-speculatively, CoNDA guarantees
that the primitive cannot be rolled back, allowing the primitive to
work exactly as it does in conventional CPU multithreading. Third,
after the primitive has been performed, the NDA resumes optimistic
execution.

5.8 Support for Weaker Consistency Models
In Section 4.1, we assume a sequentially-consistent memory mo-
del, but CoNDA can support other common memory consistency
models. We illustrate this using a brief case study on how CoNDA
works with the x86-TSO (total store ordering) consistency model.
CoNDA can support x86-TSO by waiting to add store addresses to
signatures until the addresses are issued to the memory system.
To support x86-TSO, each CPU and NDA needs to include a FIFO
write buffer that can hold issued stores until they are written to the
memory system. Since the write buffer is architecturally invisible,
CoNDA ensures that the CPUWriteSet signatures do not record an
address that is in the write buffer. CoNDA records a write address
in the CPUWriteSet only when the address leaves the write buffer
and is sent to the memory system. The coherence resolution logic
in CoNDA remains unchanged, as the write must become visible to
the entire system when it is completed by the memory system. For
example, if the CPU writes to memory address A, and an NDA reads
from memory address A, there is no conflict as long as the write
stays in the write buffer, and the NDA read can complete, which is
an expected memory ordering in x86-TSO. Once the write from the
write buffer is issued to the memory, the address is recorded in the
CPUWriteSet and becomes visible to the entire system.

5.9 Hardware Overhead
Each NDA uses 512 B to store signatures, while the CPU uses 2 kB in
total. Aside from the signatures, CoNDA’s overhead consists mainly
of (1) 1 bit per page in the page table (0.003% of DRAM capacity)
and 1 bit per TLB entry for the page table flag bits (Section 5.1);
(2) a 1.6% increase in NDA L1 data cache size for the per-word
uncommitted data bit mask (Section 5.4); and (3) two 8-bit counters
per NDA to track the number of addresses stored in each signature.

6 METHODOLOGY
We implement CoNDA in the gem5 simulator [10]. We perform
all simulations in full-system mode using the x86 ISA, and modify
the integrated DRAMSim2 [19] DRAM timing simulator to model
3D-stacked HMC DRAM [29, 30, 49] available to the NDAs. To
accurately model the coherence mechanisms, we modify the Ruby
memory model in gem5. We include a local coherence directory for
the NDAs, and set the CPU coherence directory as the main point
of coherence for the system. Both the NDA and CPU directories
use the MESI protocol. Table 1 shows our system configuration.
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Processor 16 cores, 8-wide issue, 2GHz frequency, out-of-order
L1 I/D Caches: 64 kB private, 4-way, 64 B blocks
L2 Cache 4MB shared, 8-way, 64 B blocks
Coherence: MESI

Near-Data 16 NDAs per stack, 1-wide issue, 2GHz frequency, in-order
Accelerator L1 I/D Caches: 64 kB private, 4-way, 64 B blocks

Coherence: MESI
HMC [49] one 4GB cube, 16 vaults per cube,

16 banks per vault
Memory DDR3-1600, 4GB, FR-FCFS scheduler

Table 1: Evaluated system configuration.

Our simulation platform models all of the overheads of CoNDA.
During coherence resolution, these overheads include (1) 20 cy-
cles to send each signature from the NDA to the CPU, which is
a conservative estimate given that it takes 3 cycles to transfer a
256 B signature across the HMC link; (2) 2 cycles to compare a CPU
signature to an NDA signature, which is more conservative than
prior work [16, 17]; (3) 8 cycles to invalidate a CPU cache line on a
matching address; and (4) 12 cycles to transfer a cache line from the
CPU to the NDA to merge writes. We model the full overhead of
NDA kernel re-execution, which involves (1) invalidating uncom-
mitted cache lines and erasing signatures; (2) rolling back the NDA
to a checkpoint, (3) resolving coherence, and (4) re-running the
kernel. We assume that NDA rollback takes 8 cycles, since the NDA
is a small core with a small cache, making the rollback significantly
cheaper than for large out-of-order CPUs.

We report memory system energy using an energy model similar
to prior work [13], which accounts for the total energy consumed
by the DRAM, on-chip and off-chip interconnects, and all caches.
We use detailed simulator statistics to drive this model. We model
the 3D-stacked DRAM energy as the energy consumed per bit, le-
veraging estimates and models from prior work [52]. We estimate
the energy consumption of all L1 and L2 caches using CACTI-P
6.5 [86], assuming a 22 nm process. We model the off-chip intercon-
nect using the method used by prior work [26], which estimates
the HMC SerDes energy consumption as 3 pJ/bit for data packets.
Applications.We study two classes of applications that are well-
suited for NDA. For these applications, we use two types of input
datasets: (1) a modest size dataset, which we use to perform the
majority of our evaluations; and (2) a large size dataset, which we
use in Section 7.5 to show how CoNDA’s benefits scale as the input
sizes increase.

We evaluate three graph applications from Ligra [111] (a light-
weight multithreaded graph framework): Connected Components
(CC), Radii, and PageRank (PR). The modest size dataset for our
graph applications consists of input graphs from three real-world
networks [114]: Enron email communication network (73384 no-
des, 367662 edges), arXiv General Relativity (10484 nodes, 28984
edges), and peer-to-peer Gnutella25 (45374 nodes, 109410 edges).
The large size dataset consists of input graphs from two real-world
networks [114], which are on average 14.8x larger than the graphs
used in the modest size dataset: (1) the Amazon product network
(334863 nodes, 925872 edges), and (2) the DBLP collaboration net-
work (317080 nodes, 1049866 edges)).

We also evaluate an in-house prototype of an in-memory data-
base (IMDB) that supports HTAP workloads [82, 101, 117]. Our
IMDB uses a state-of-the-art, highly-optimized hash join ker-
nel [120]. For the modest size dataset, we simulate an IMDB system
with 64 tables, 64K tuples per table, and 32 randomly-populated
integer fields per table. Our transactional workload consists of 64K

transactions, where each transaction reads from or writes to 1–3
randomly-chosen database tuples. Our two analytical workloads
consist of 128 or 256 analytical queries (HTAP-128 and HTAP-256)
that use the select and join operations. For the large size dataset, we
increase the size of the IMDB system to 64 tables with 640K tuples
per table, with 256K transactions in the transactional workload and
1024 queries in the analytical workload (HTAP-1024).
Identifying NDA Kernels in Applications. Similar to prior
works [4, 13], we identify candidate NDA kernels that are memory-
intensive and not cache friendly. Using hardware performance
counter data, we consider a function to be an NDA kernel candi-
date when (1) it is memory intensive (i.e., its LLC misses per kilo
instruction, or MPKI, is greater than 20 [62, 63, 85]); (2) the majority
of the function’s execution time is spent on data movement; and
(3) it is one of the top three functions in the workload in terms
of execution time. From this set of candidate kernels, we select
kernels for NDA execution such that we minimize the amount of
data sharing that occurs between CPU threads and NDA kernels. A
lower amount of data sharing leads to higher performance under
existing coherence mechanisms (i.e., NC, CG, FG), and more modest
performance improvements with CoNDA. We manually annotate
the NDA data region, by replacing all malloc calls to data in the
region with a custom memory allocator called nda_alloc, which
notifies gem5 that the data belongs to the region.

In most Ligra applications, we select the edgeMap function as
an NDA kernel. This function processes and updates a subset of
edges for each vertex [111], which generates many randommemory
accesses. In our HTAP workloads, we select the analytical queries
(i.e., select and join operations) as NDA kernels.

7 EVALUATION
We show results normalized to a CPU-only baseline, and com-
pare CoNDA to NDA execution using fine-grained coherence (FG),
coarse-grained locks (CG), non-cacheable NDA data (NC), or ideal
coherence (Ideal-NDA), as described in Section 3.2.

7.1 Off-Chip Data Movement
Figure 7 shows the normalized off-chip data movement (which we
measure as bytes transferred between the NDAs and the CPU) of
the NDA coherence mechanisms for a system with 16 CPU cores
and 16 NDAs. We make three observations from the figure. First,
CoNDA significantly reduces the overall data movement compared
to all prior NDA coherence mechanisms, with an average reduction
of 30.9% over the next best mechanism, CG. Compared to CG, which
has to flush every dirty cache line in each region acquired by the
NDA, CoNDA uses its insight on NDA memory accesses to greatly
reduce the number of lines flushed (e.g., by 92.2% for Radii using
arXiv). Second, NC’s data movement is very high because all pro-
cessor accesses to the NDA data region must go to DRAM. Third,
CoNDA reduces data movement by 86.3% over CPU-only, because it
successfully allows memory-intensive portions of the applications
to no longer consume off-chip bandwidth.
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Figure 7: Normalized off-chip data movement.
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7.2 Performance
Figure 8 shows the performance improvement for our 16-core sy-
stem. We make four observations from the figure. First, with no
coherence overhead, Ideal-NDA shows that there is significant po-
tential for speedup (on average 1.84x) in our applications when we
use NDAs. Second, we observe that CG and NC experience drastic
performance losses compared to Ideal-NDA, due to the high costs
they have in maintaining coherence. Both CG and NC lead to on
average 0.4% and 6.0% performance loss over CPU-only. Third, while
FG provides reasonable performance improvements, it still falls far
short of Ideal-NDA, achieving only 44.9% of Ideal-NDA’s perfor-
mance benefits. Fourth, unlike the other mechanisms, CoNDA’s
efficient approach to coherence allows it to retain most of the per-
formance benefits of Ideal-NDA, coming within 10.4% on average.
CoNDA improves performance over CPU-only by 66.0%, and over
the best previous mechanism, FG, by 19.6%.

We also evaluate the effect of offloading the entire application
to NDAs. Running an entire application on NDAs eliminates the
need for coherence between the CPU and NDAs. However, our
analysis shows that executing these applications entirely on NDAs
hurts performance significantly, eliminating on average 82.2% of
Ideal-NDA’s performance improvement. CoNDA performs 51.7%
better than NDA-only, and NDA-only performs only 8.7% better
than CPU-only. The reason is that the NDA cannot afford to incor-
porate complicated logic and large caches due to power and area
constraints [13, 21, 27], which, for NDA-only, significantly slows
down the parts of the application that are better suited for CPU
execution.
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Figure 8: Speedup.

CoNDA’s execution time consists of three major parts: (1) NDA
kernel execution, (2) coherence resolution overhead, and (3) re-
execution overhead. Our analysis shows that for our applications,
the coherence resolution and re-execution overheads take 3.3% and
8.4% of the entire execution time, respectively.
Coherence Resolution Overhead. We find that the coherence
resolution overhead is low because (1) CPU threads do not stall
during resolution unless they access the NDA data region; (2) the
NDAWriteSet typically contains only a small number of addresses
(6 on average), which limits the number of CPU-side invalidations
and NDA writebacks (see Section 5.6); and (3) resolution mainly
involves sending signatures and checking for any necessary cohe-
rence operations, which altogether take less than 50 cycles.
Re-Execution Overhead. We find that the overhead of re-
execution is small for two reasons. First, as we mention in
Section 3.1, the collision rate (i.e., the fraction of commit attempts
that require re-execution) is low (13.4% on average) for our applica-
tions, limiting the number of times an NDA must re-execute and
the number of cache lines that must be flushed to DRAM. Second,
the re-execution of the NDA kernel portion is significantly faster
than its original execution. This is because the majority of data and
instructions needed by the NDA during re-execution are already in

the NDA L1 cache from the previous execution, and CoNDA places
a copy of each cache line flushed from the CPU during coherence
resolution into the NDA L1 cache.

7.3 Memory System Energy
Figure 9 shows the memory system energy consumption of the
NDA coherence mechanisms. We observe that CoNDA reduces
energy consumption over all prior mechanisms, by 18.0% on average
over the best mechanism for memory system energy (CG). CoNDA
achieves nearly all of the energy reduction potential of Ideal-NDA,
coming within 4.4%, and reduces energy consumption by 43.7% over
CPU-only. This is because CoNDA successfully reduces off-chip
traffic, and eliminates much of the unnecessary coherence traffic of
existing coherence mechanisms.
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Figure 9: Normalized memory system energy.

FG, CG, and NC each introduce coherence overheads that un-
dermine their potential for energy savings. FG exchanges a very
high number of off-chip coherence messages between the CPU
and the NDAs. While CG reduces memory system energy over
CPU-only, it induces a large number of writebacks, which increase
DRAM energy consumption by 18.9% CPU-only. The additional
DRAM energy cancels out some of the off-chip interconnect energy
savings (a 49.1% reduction over CPU-only) that CG provides. We
find that CG is more energy efficient than FG because it generates
less off-chip coherence traffic. CG performs writebacks only at the
beginning of NDA kernel execution while FG generates off-chip
coherence traffic on every single coherence miss. NC forces all CPU
accesses to the NDA data region to bypass the CPU caches and
go to DRAM, which increases the interconnect and DRAM energy
over CPU-only by 3.1x and 4.5x, respectively.

7.4 Multiple Memory Stacks
In systems that need a large main memory, there can be multi-
ple memory stacks each with NDAs. We evaluate how CoNDA’s
benefits scale as multiple stacks require coherence, using a repre-
sentative workload (PageRank with the arXiv input graph) as a case
study. In this study, we assume that there are four CPU cores and
four NDAs per stack, and that stacks are connected together using
the processor-centric topology [61]. We use the local NDA directory
in each NDA stack (Section 6) to maintain coherence between dif-
ferent stacks (i.e., similar to the distributed directory in NUMA
machines [1, 43]) using the MESI coherence protocol.
Off-Chip Traffic. Figure 10 shows the normalized off-chip traffic
for each mechanism as the number of stacks increases. The NDA
and CPU core count increases with stack count, and so does the off-
chip memory traffic. Unlike existing NDA coherence mechanisms,
off-chip traffic under CoNDA scales well and remains significantly
lower than CPU-only as we increase the stack count. FG and CG
do not scale as well as CoNDA. For FG, increasing the stack count
leads to a significantly larger number of coherence misses, and thus,
generates more off-chip coherence messages. For CG, the number
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Figure 10: Effect of stack count on data movement (lower is
better) for PageRank with arXiv input graph.

of writebacks required scales superlinearly with stack count (6.2x
from 1 to 4 stacks; not shown). NC generates more traffic than CPU-
only across all stack counts. In contrast, even with 4 stacks, CoNDA
reduces off-chip traffic by 82% over CPU-only, again significantly
reducing the cost of NDA coherence.
Performance. Figure 11 shows the normalized speedup for each
mechanism as the number of stacks increases. Across all stack
counts, we find that CoNDA consistently outperforms CPU-only,
FG, CG, and NC. Compared to FG, the best existing mechanism at
4 stacks, CoNDA improves performance by 21.5%. This is because
there is more off-chip traffic at higher stack counts, which CoNDA
reduces, as we see in Figure 10. Unlike CoNDA, as the stack count
increases, CG (at 4 stacks) and NC (at 2 and 4 stacks) actually per-
form worse than CPU-only. CG performs worse for two reasons:
(1) the high number of flushes; and (2) the increased probability
of blocking CPU threads during concurrent execution, with the
threads stalled for up to 73.1% of the execution time. FG still outper-
forms CPU-only as the stack count increases, but its high amount
of off-chip coherence requests prevents it from coming close to
CoNDA’s performance.

0.5	
1.0	
1.5	
2.0	
2.5	
3.0	

1	Stack	 2	Stacks	 4	Stacks	

Sp
ee
du

p	

CPU-only	 NC	 CG	 FG	 CoNDA	 Ideal-NDA	
3.3x	

Figure 11: Effect of stack count on speedup for PageRank
with arXiv input graph.

7.5 Effect of Larger Data Sets
Increasing the data set size significantly increases the benefits of
CoNDA. This is because the larger data sets result in a signifi-
cantly larger number of cache misses than the smaller data sets.
As a result, more coherence traffic is generated, which, thus, pro-
vides more opportunities for CoNDA to eliminate overheads. To
demonstrate this, we evaluate three of our applications with larger
data sets: (1) Connected Components and (2) Radii, and (3) HTAP-
1024. Figure 12 shows the performance improvement normalized
to the CPU-only baseline. We find that Ideal-NDA outperforms
CPU-only by 9.2x, averaged across these three workloads. CoNDA
retains most of the performance benefits of Ideal-NDA, coming
within 10.2% on average, and improves performance by 8.4x over
CPU-only, 7.7x over NDA-only, and 38.3% over FG (the best prior co-
herence mechanism). Similar to our observation for the modest size
data sets, executing these applications entirely on NDAs (shown by
NDA-only) hurts performance significantly, eliminating on average
88.7% of Ideal-NDA’s performance improvement. We conclude that
as we scale to larger data sets, CoNDA retains its effectiveness at
eliminating unnecessary coherence traffic and preserves almost all
of the benefits of NDA execution.
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Figure 12: Speedup for larger data sets.

7.6 Effect of Optimistic Execution Duration
As we discuss in Section 5.3, the duration of optimistic execution
is determined by the number of addresses that can be held in the
signatures without exceeding a target false positive rate, for a fixed
signature length. Figure 13 shows how varying the number of ad-
dresses affects execution time and off-chip traffic (normalized to
CPU-only) for two representative workloads: Connected Compo-
nents with the Enron input graph, and HTAP-128. We make two
observations from the figure. First, as the duration increases from
150 addresses to 350 addresses, the total execution time increases
by 5.7% and 10.5% for Connected Components and HTAP-128, re-
spectively. This is because when the duration is longer, there are
more opportunities for the CPU and NDA to collide on the same
cache line. As a result, the conflict rate (i.e., the fraction of cohe-
rence resolution attempts that require re-execution) increases by
18.3% and 41.2%, respectively. Second, as the duration increases, the
off-chip traffic decreases, by 25.7% and 15.5%, respectively. Every
time CoNDA performs coherence resolution, the NDA sends its
signatures to the CPU across the off-chip interconnect, and a longer
duration requires less frequent coherence resolution.
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Figure 13: Effect of optimistic execution duration.

Given our signature size (256 B) and target false positive rate
(20%), we conclude that a duration of 250 addresses strikes a good
balance between execution time and off-chip traffic.

7.7 Effect of Signature Size
We repeat the study from Section 7.6, but this time hold the duration
of optimistic execution constant at 250 addresses, and instead vary
the size of each signature. Figure 14 shows how the signature size
affects execution time and off-chip traffic (normalized to CPU-only).
Wemake two observations from the figure. First, when the signature
size increases from 256 B to 1 kB, the execution time decreases by
10.1% forConnected Components and 10.9% forHTAP-128. Increasing
the signature size has a similar effect to decreasing the duration of
optimistic execution. In this case, the conflict rate decreases mainly
because the false positive rate is lower, by 31.4% and 40.5% for the
respective workloads. Second, when the signature size increases
from 256 B to 512 B and to 1 kB, the off-chip traffic increases, by
32.7% and 31.4%, respectively.
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We conclude that for a 250-address duration, using a smaller
256 B signature strikes a good balance between storage overhead,
execution time, and off-chip traffic across all of our workloads.

7.8 Effect of Data Sharing Characteristics
The amount of data shared by CPU threads and NDA kernels, and
the rate at which these two collide on the same cache lines during
concurrent execution, are intrinsic properties of the application
and how it is partitioned. We can group applications into three
categories: (1) limited sharing; (2) high amount of sharing, infre-
quent collisions; (3) high amount of sharing, frequent collisions.
So far, our work has shown that several important applications
fit into Category 2, and CoNDA is much more effective for these
applications than existing coherence mechanisms. In this section,
we explore how CoNDA performs for applications in the other two
categories (1 & 3).

Many NDA applications fall under Category 1, and prior works
on NDA often assume this behavior (e.g., [21, 25, 27, 59, 97, 126]). To
show how CoNDA compares to CG, NC, and FG for such applicati-
ons, we construct two representative benchmarks inspired by prior
works [5, 13, 104]: (1) a matrix tiling operation that is offloaded to
an NDA, and (2) a kernel where the NDA performs memcpy() and
memset() on a large region of memory. During NDA execution,
the CPU is idle. For these benchmarks, we find that CG, NC, and
CoNDA all perform comparably, outperforming CPU-only by 1.83x,
1.85x, and 1.82x, respectively (not shown). All three achieve near-
ideal performance, with CoNDA coming within 2.8%. In contrast,
FG performs relatively poorly, only coming within 21.1% of Ideal-
NDA, due to its high coherence traffic. Even though CG and NC
especially cater to such applications, CoNDA still performs compe-
titively, as very few rollbacks occur when sharing is limited. Unlike
CG and NC, CoNDA provides coherence at a fine granularity (i.e.,
per cache line) for these applications, making the programming
model simpler.

Unlike applications in Categories 1 and 2, applications in Cate-
gory 3 may not benefit significantly from the concurrent execution
of CPU threads and NDA kernels. For such applications, most cohe-
rence messages are necessary, and the system would have to spend
a large fraction of the total execution time on performing these
requests. We develop a representative microbenchmark for this cate-
gory, where the NDA performs a tiling operation on a matrix while
the CPU threads concurrently update and read from the matrix. FG,
CG, and NC all hurt the performance of the benchmark, performing
33.4% worse (averaged across the three coherence mechanisms)
than CPU-only (not shown) for the same reasons that we discuss
in Section 3.2. While CoNDA does significantly better, performing
only 2.1% worse than CPU-only, it still falls significantly short of
Ideal-NDA, by 51.2%, due to frequent rollbacks. We note, however,
that applications where a large portion of the execution is done on
an accelerator [24, 50, 51, 54, 67, 77, 99] rarely exhibit this kind of

behavior where the CPU and the accelerator collide frequently on
shared data.

We conclude that for the vast majority of accelerator-centric
applications, we expect that CoNDA (1) either significantly out-
performs or performs competitively with existing NDA coherence
mechanisms, and (2) achieves near-ideal performance.

8 RELATEDWORK
To our knowledge, this is the first work to (1) perform an extensive
design exploration of state-of-the-art mechanisms for NDA–CPU
coherence, and (2) propose an efficient mechanism for coherence
at a fine granularity between NDA kernels and CPU threads. Most
recent NDA proposals assume that there is only a limited amount
of data sharing between NDA kernels and the CPU threads, and
employ naive solutions for coherence, such as (1) assuming that
data is never accessed concurrently [3, 48], (2) making NDA data
non-cacheable in the CPU [3, 21, 25, 27, 88, 97], (3) flushing all dirty
cache lines from CPU caches before starting an NDA kernel [26, 74,
121, 129], (4) using coarse-grained coherence [25, 126], or (5) using
traditional fine-grained coherence protocols [13]. We show that
these approaches are not effective for several important application
domains (see Sections 3 and 7).

Other works aim to provide efficient coherence support in non-
NDA systems. HSC [96] reduces coherence traffic between the CPU
and GPU. However, HSC assumes that both the CPU and GPU
are on the same chip, and thus can benefit from CG, unlike many
NDA systems. FUSION [70] employs MESI (fine-grained, or FG)
coherence between on-chip accelerators and the CPU. As we show
in Sections 3 and 7, FG eliminates the majority of the benefits of an
NDA due to the high cost of off-chip traffic.

Several works [6, 57, 90, 112] reduce on-chip communication
between GPU cores, and are also not well-suited for NDA–CPU
coherence. For example, the DeNovo protocol [112] communicates
at a fine granularity when (1) a cache miss occurs, (2) the protocol
registers a write (i.e., informs the directory of the core that holds
the modified data), or (3) a cache line is evicted. Since NDA kernels
often have poor cache locality, this would cause DeNovo to gene-
rate a large amount of off-chip traffic. Furthermore, protocols like
DeNovo are not readily compatible with existing coherence proto-
cols, and require us to implement the new protocol across the entire
system [112], which is a barrier to adoption. In contrast, CoNDA is
designed with the poor cache locality of NDA kernels in mind, and
does not require the modification of existing coherence protocols
elsewhere in the system. We believe these works [6, 57, 90, 112]
can be used to optimize intra-NDA coherence.

Our execution model is inspired by Optimistic Concurrency
Control (OCC) [71]. Many prior works harness OCC for various
purposes [7, 16–18, 40, 44, 45, 81, 84, 98, 109, 115, 122]. CoNDA uses
optimistic execution in a different context (NDA–CPU communica-
tion) with a different goal (efficient off-chip coherence) from these
works. Optimistic execution in CoNDAobserves memory accesses
to gain insight into what part of the data will be accessed, and is
key to eliminating coherence requests that are unnecessary. Opti-
mistic execution can also be used to enable further optimizations
for NDA-based systems, such as if a kernel should execute on an
NDA or on the CPU. We leave such optimizations as future work.

While our execution model shares similarities with Bulk-style
mechanisms [16, 17, 122, 124, 132] (i.e., mechanisms that speculati-
vely execute chunks of instructions and make use of speculative
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memory access information to correctly track potential data con-
flicts during speculation), there is a key distinction. Bulk assumes
that all compute units are speculative, including the CPU, and, thus,
a core must compare all of its memory accesses with those of all
other cores. In CoNDA, only some of the compute units (i.e., NDAs)
are speculative. This key distinction leads to a completely diffe-
rent definition of conflicts, which in turn changes many aspects of
the system (e.g., the commit protocol, coherence resolution logic,
signature implementation). Importantly, CPUs in CoNDA never
roll back, do not require checkpointing (which has a high storage
overhead in Bulk), and do not need to track any writes to non-NDA
data or any reads. As a result, CoNDA is less costly than Bulk.
Our execution model also shares similarities with works that use
transactional memory (TM) semantics (e.g., [7, 40, 44, 45, 84, 109]),
but there are two key differences. First, while any CPU can bundle
multiple memory accesses into an atomic transaction in TM, only
the NDA bundles multiple memory accesses into a single commit
operation in CoNDA. Second, while programmers must express the
transaction boundaries in TM, they do not need to do so in CoNDA,
as CoNDA dynamically determines the duration of optimistic exe-
cution, transparently to the programmer.

9 CONCLUSION
Many applications can harness near-data accelerators (NDAs) to
gain significant performance and energy benefits. However, en-
forcing coherence between an NDA and the rest of the system is
a major challenge. We extensively analyze NDA applications and
existing coherence mechanisms, and observe that (1) a majority
of off-chip coherence traffic is unnecessary, and (2) a significant
portion of off-chip data movement can be eliminated if a cohe-
rence mechanism has insight into NDA memory accesses. Based
on our observations, we propose CoNDA, a coherence mechanism
that lets an NDA optimistically execute code assuming that it has
coherence permissions. Optimistic execution enables CoNDA to gat-
her information on memory accesses, and exploit the information
to minimize unnecessary off-chip data movement for coherence.
Our results show that CoNDA improves performance and reduces
energy consumption compared to existing coherence mechanisms,
and comes close to the energy and performance of a no-cost ideal
coherence mechanism. We conclude that CoNDA is an effective co-
herence mechanism for NDAs, and hope that this work encourages
the development of other mechanisms for NDA coherence.
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